3,713 research outputs found

    Containers : A Sound Basis For a True Single System Image

    Get PDF
    Clusters of SMPs are attractive for executing shared memory parallel applications but reconciling high performance and ease of programming remains an open issue. A possible approach is to provide an efficient Single System Image (SSI) operating system giving the illusion of an SMP machine. In this paper, we introduce the concept of container as a mechanism to unify global resource management at the lowest operating system level. Higher level operating system services such as virtual memory system and file cache can be easily implemented based on containers and transparently take benefit of the whole memory resource available in the cluster

    Research on reliable distributed computing

    Get PDF
    Issued as Quarterly funds expenditure reports [nos. 1-4], Quarterly progress reports [nos. 1-4], Final report and Appendix, Project no. G-36-62

    A forensically-enabled IASS cloud computing architecture

    Get PDF
    Current cloud architectures do not support digital forensic investigators, nor comply with today’s digital forensics procedures largely due to the dynamic nature of the cloud. Whilst much research has focused upon identifying the problems that are introduced with a cloud-based system, to date there is a significant lack of research on adapting current digital forensic tools and techniques to a cloud environment. Data acquisition is the first and most important process within digital forensics – to ensure data integrity and admissibility. However, access to data and the control of resources in the cloud is still very much provider-dependent and complicated by the very nature of the multi-tenanted operating environment. Thus, investigators have no option but to rely on cloud providers to acquire evidence, assuming they would be willing or are required to by law. Furthermore, the evidence collected by the Cloud Service Providers (CSPs) is still questionable as there is no way to verify the validity of this evidence and whether evidence has already been lost. This paper proposes a forensic acquisition and analysis model that fundamentally shifts responsibility of the data back to the data owner rather than relying upon a third party. In this manner, organisations are free to undertaken investigations at will requiring no intervention or cooperation from the cloud provider. The model aims to provide a richer and complete set of admissible evidence than what current CSPs are able to provide

    Maintaining consistency in distributed systems

    Get PDF
    In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability

    Advanced information processing system for advanced launch system: Avionics architecture synthesis

    Get PDF
    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described
    • …
    corecore