5,044 research outputs found

    Computation of maximal local (un)stable manifold patches by the parameterization method

    Full text link
    In this work we develop some automatic procedures for computing high order polynomial expansions of local (un)stable manifolds for equilibria of differential equations. Our method incorporates validated truncation error bounds, and maximizes the size of the image of the polynomial approximation relative to some specified constraints. More precisely we use that the manifold computations depend heavily on the scalings of the eigenvectors: indeed we study the precise effects of these scalings on the estimates which determine the validated error bounds. This relationship between the eigenvector scalings and the error estimates plays a central role in our automatic procedures. In order to illustrate the utility of these methods we present several applications, including visualization of invariant manifolds in the Lorenz and FitzHugh-Nagumo systems and an automatic continuation scheme for (un)stable manifolds in a suspension bridge problem. In the present work we treat explicitly the case where the eigenvalues satisfy a certain non-resonance condition.Comment: Revised version, typos corrected, references adde

    Separating manifolds in slow-fast systems

    Get PDF

    A note on the convergence of parametrised non-resonant invariant manifolds

    Full text link
    Truncated Taylor series representations of invariant manifolds are abundant in numerical computations. We present an aposteriori method to compute the convergence radii and error estimates of analytic parametrisations of non-resonant local invariant manifolds of a saddle of an analytic vector field, from such a truncated series. This enables us to obtain local enclosures, as well as existence results, for the invariant manifolds

    Homoclinic points of 2-D and 4-D maps via the Parametrization Method

    Get PDF
    An interesting problem in solid state physics is to compute discrete breather solutions in N\mathcal{N} coupled 1--dimensional Hamiltonian particle chains and investigate the richness of their interactions. One way to do this is to compute the homoclinic intersections of invariant manifolds of a saddle point located at the origin of a class of 2N2\mathcal{N}--dimensional invertible maps. In this paper we apply the parametrization method to express these manifolds analytically as series expansions and compute their intersections numerically to high precision. We first carry out this procedure for a 2--dimensional (2--D) family of generalized Henon maps (N\mathcal{N}=1), prove the existence of a hyperbolic set in the non-dissipative case and show that it is directly connected to the existence of a homoclinic orbit at the origin. Introducing dissipation we demonstrate that a homoclinic tangency occurs beyond which the homoclinic intersection disappears. Proceeding to N=2\mathcal{N}=2, we use the same approach to determine the homoclinic intersections of the invariant manifolds of a saddle point at the origin of a 4--D map consisting of two coupled 2--D cubic H\'enon maps. In dependence of the coupling the homoclinic intersection is determined, which ceases to exist once a certain amount of dissipation is present. We discuss an application of our results to the study of discrete breathers in two linearly coupled 1--dimensional particle chains with nearest--neighbor interactions and a Klein--Gordon on site potential.Comment: 24 pages, 10 figures, videos can be found at https://comp-phys.tu-dresden.de/supp
    corecore