54,665 research outputs found

    On the Benefits of Surrogate Lagrangians in Optimal Control and Planning Algorithms

    Full text link
    This paper explores the relationship between numerical integrators and optimal control algorithms. Specifically, the performance of the differential dynamical programming (DDP) algorithm is examined when a variational integrator and a newly proposed surrogate variational integrator are used to propagate and linearize system dynamics. Surrogate variational integrators, derived from backward error analysis, achieve higher levels of accuracy while maintaining the same integration complexity as nominal variational integrators. The increase in the integration accuracy is shown to have a large effect on the performance of the DDP algorithm. In particular, significantly more optimized inputs are computed when the surrogate variational integrator is utilized

    Hybrid model predictive control for freeway traffic using discrete speed limit signals

    Get PDF
    HYCON2 Show day - Traffic modeling, Estimation and Control 13/05/2014 GrenobleIn this paper, two hybrid Model Predictive Control (MPC) approaches for freeway traffic control are proposed considering variable speed limits (VSL) as discrete variables as in current real world implementations. These discrete characteristics of the speed limits values and some necessary constraints for the actual operation of VSL are usually underestimated in the literature, so we propose a way to include them using a macroscopic traffic model within an MPC framework. For obtaining discrete signals, the MPC controller has to solve a highly non-linear optimization problem, including mixed-integer variables. Since solving such a problem is complex and difficult to execute in real-time, we propose some methods to obtain reasonable control actions in a limited computation time. The first two methods (-exhaustive and -genetic discretization) consist of first relaxing the discrete constraints for the VSL inputs; and then, based on this continuous solution and using a genetic or an exhaustive algorithm, to find discrete solutions within a distance of the continuous solution that provide a good performance. The second class of methods split the problem in a continuous optimization for the ramp metering signals and in a discrete optimization for speed limits. The speed limits optimization, which is much more time-consuming than the ramp metering one, is solved by a genetic or an exhaustive algorithm in communication with a non-linear solver for the ramp metering. The proposed methods are tested by simulation, showing not only a good performance, but also keeping the computation time reduced.Unión Europea FP7/2007–201

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners
    • …
    corecore