1,592 research outputs found

    A Preliminary Exploration of the Placental Position Influence on Uterine Electromyography Using Fractional Modelling

    Get PDF
    The uterine electromyogram, also called electrohysterogram (EHG), is the electrical signal generated by uterine contractile activity. The EHG has been considered an expanding technique for pregnancy monitoring and preterm risk evaluation. Data were collected on the abdominal surface. It has been speculated the effect of the placenta location on the characteristics of the EHG. In this work, a preliminary exploration method is proposed using the average spectra of Alvarez waves contractions of subjects with anterior and non-anterior placental position as a basis for the triple-dispersion Cole model that provides a best fit for these two cases. This leads to the uterine impedance estimation for these two study cases. Non-linear least square fitting (NLSF) was applied for this modelling process, which produces electric circuit fractional models' representations. A triple-dispersion Cole-impedance model was used to obtain the uterine impedance curve in a frequency band between 0.1 and 1 Hz. A proposal for the interpretation relating the model parameters and the placental influence on the myometrial contractile action is provided. This is the first report regarding in silico estimation of the uterine impedance for cases involving anterior or non-anterior placental positions.info:eu-repo/semantics/publishedVersio

    A Preliminary Exploration of the Placental Position Influence on Uterine Electromyography Using Fractional Modelling

    Get PDF
    Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.The uterine electromyogram, also called electrohysterogram (EHG), is the electrical signal generated by uterine contractile activity. The EHG has been considered an expanding technique for pregnancy monitoring and preterm risk evaluation. Data were collected on the abdominal surface. It has been speculated the effect of the placenta location on the characteristics of the EHG. In this work, a preliminary exploration method is proposed using the average spectra of Alvarez waves contractions of subjects with anterior and non-anterior placental position as a basis for the triple-dispersion Cole model that provides a best fit for these two cases. This leads to the uterine impedance estimation for these two study cases. Non-linear least square fitting (NLSF) was applied for this modelling process, which produces electric circuit fractional models’ representations. A triple-dispersion Cole-impedance model was used to obtain the uterine impedance curve in a frequency band between 0.1 and 1 Hz. A proposal for the interpretation relating the model parameters and the placental influence on the myometrial contractile action is provided. This is the first report regarding in silico estimation of the uterine impedance for cases involving anterior or non-anterior placental positions.publishersversionpublishe

    Energy Consideration of a Capacitor Modelled Using Conformal Fractional-Order Derivative .

    Get PDF
    Fractional order circuit elements have become important parts of electronic circuits to model systems including supercapacitors, filters, and many more. The conformal fractional derivative (CFD), which is a new basic fractional derivative, has been recently used to model supercapacitors successfully. It is essential to know how electronic components behave under excitation with different types of voltage and current sources. A CFD capacitor is not a well-known element and its usage in circuits is barely examined in the literature. In this research, it is examined how to calculate the stored energy of a CFD capacitor with a series resistor supplied from a DC voltage source. The solutions given in this study may be used in circuits where supercapacitors are used

    Opamp-based synthesis of a fractional order switched system

    Get PDF
    "The analysis, design and circuit synthesis of a fractional order switched system is presented in this paper. That system is capable of showing chaotic oscillations with a fractional order less than three, i.e., 2.4. The dynamical system is called fractional order unstable dissipative system (FOUDS); because it consists of a switching law to display strange attractors. Its dynamical behavior is explored and a circuit synthesis system is realized considering operational amplifiers. SPICE simulations agree with the numerical results.

    A Conformal Fractional Derivative-based Leaky Integrate-and-Fire Neuron Model

    Get PDF
    Neuron model have been extensively studied and different models have been proposed. Nobel laureate Hodgkin-Huxley model is physiologically relevant and can demonstrate different neural behaviors, but it is mathematically complex. For this reason, simplified neuron models such as integrate-and-fire model and its derivatives are more popular in the literature to study neural populations. Lapicque’s integrate-and-fire model is proposed in 1907 and its leaky integrate-and-fire version is very popular due to its simplicity. In order to improve this simple model and capture different aspects of neurons, a variety of it have been proposed. Fractional order derivative-based neuron models are one of those varieties, which can show adaptation without necessitating additional differential equations. However, fractional-order derivatives could be computationally costly. Recently, a conformal fractional derivative (CFD) is suggested in literature. It is easy to understand and implement compared to the other methods. In this study, a CFD-based leaky integrate-and-fire neuron model is proposed. The model captures the adaptation in firing rate under sustained current injection. Results suggest that it could be used to easily and efficiently implement network models as well as to model different sensory afferents

    Analysis of fractional order systems using newton iteration-based approximation technique

    Get PDF
    Fractional differential equations play a major role in expressing mathematically the real-world problems as they help attain good fit to the experimental data. It is also known that fractional order controllers are more flexible than integer order controllers. But when it comes to the numerical approximation of fractional order functions inaccuracies arise if the conversion technique is not chosen properly. So, when a fractional order plant model is approximated to an integer order system, it is required that the approximated model be accurate, as the overall system performance is based on the estimated integer order model. Nitisha-Pragya-Carlson (NPC) is a recent approximation technique proposed in 2018 to derive the rational approximation of fractional order differ-integrators. In this paper, three fractional order plant models having fractional powers 3.1, 1.25 and 1.3 is analyzed in frequency domain in terms of magnitude and phase response. The performance of approximated third and second order NPC based integer model is studied and compared with the integer models developed using other existing technique. The approximation error is calculated by comparing the frequency response of the developed models with the ideal response. It has been found that in all the three examples NPC based models are very much close to the ideal values. Hence proving the efficacy of NPC technique in approximation of fractional order systems
    corecore