4,828 research outputs found

    Machine Learning at the Edge: A Data-Driven Architecture with Applications to 5G Cellular Networks

    Full text link
    The fifth generation of cellular networks (5G) will rely on edge cloud deployments to satisfy the ultra-low latency demand of future applications. In this paper, we argue that such deployments can also be used to enable advanced data-driven and Machine Learning (ML) applications in mobile networks. We propose an edge-controller-based architecture for cellular networks and evaluate its performance with real data from hundreds of base stations of a major U.S. operator. In this regard, we will provide insights on how to dynamically cluster and associate base stations and controllers, according to the global mobility patterns of the users. Then, we will describe how the controllers can be used to run ML algorithms to predict the number of users in each base station, and a use case in which these predictions are exploited by a higher-layer application to route vehicular traffic according to network Key Performance Indicators (KPIs). We show that the prediction accuracy improves when based on machine learning algorithms that rely on the controllers' view and, consequently, on the spatial correlation introduced by the user mobility, with respect to when the prediction is based only on the local data of each single base station.Comment: 15 pages, 10 figures, 5 tables. IEEE Transactions on Mobile Computin

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Deep Learning Meets Cognitive Radio: Predicting Future Steps

    Get PDF
    Learning the channel occupancy patterns to reuse the underutilised spectrum frequencies without interfering with the incumbent is a promising approach to overcome the spectrum limitations. In this work we proposed a Deep Learning (DL) approach to learn the channel occupancy model and predict its availability in the next time slots. Our results show that the proposed DL approach outperforms existing works by 5%. We also show that our proposed DL approach predicts the availability of channels accurately for more than one time slot

    Orchestrating Service Migration for Low Power MEC-Enabled IoT Devices

    Full text link
    Multi-Access Edge Computing (MEC) is a key enabling technology for Fifth Generation (5G) mobile networks. MEC facilitates distributed cloud computing capabilities and information technology service environment for applications and services at the edges of mobile networks. This architectural modification serves to reduce congestion, latency, and improve the performance of such edge colocated applications and devices. In this paper, we demonstrate how reactive service migration can be orchestrated for low-power MEC-enabled Internet of Things (IoT) devices. Here, we use open-source Kubernetes as container orchestration system. Our demo is based on traditional client-server system from user equipment (UE) over Long Term Evolution (LTE) to the MEC server. As the use case scenario, we post-process live video received over web real-time communication (WebRTC). Next, we integrate orchestration by Kubernetes with S1 handovers, demonstrating MEC-based software defined network (SDN). Now, edge applications may reactively follow the UE within the radio access network (RAN), expediting low-latency. The collected data is used to analyze the benefits of the low-power MEC-enabled IoT device scheme, in which end-to-end (E2E) latency and power requirements of the UE are improved. We further discuss the challenges of implementing such schemes and future research directions therein
    corecore