7,491 research outputs found

    Data Management in Industry 4.0: State of the Art and Open Challenges

    Full text link
    Information and communication technologies are permeating all aspects of industrial and manufacturing systems, expediting the generation of large volumes of industrial data. This article surveys the recent literature on data management as it applies to networked industrial environments and identifies several open research challenges for the future. As a first step, we extract important data properties (volume, variety, traffic, criticality) and identify the corresponding data enabling technologies of diverse fundamental industrial use cases, based on practical applications. Secondly, we provide a detailed outline of recent industrial architectural designs with respect to their data management philosophy (data presence, data coordination, data computation) and the extent of their distributiveness. Then, we conduct a holistic survey of the recent literature from which we derive a taxonomy of the latest advances on industrial data enabling technologies and data centric services, spanning all the way from the field level deep in the physical deployments, up to the cloud and applications level. Finally, motivated by the rich conclusions of this critical analysis, we identify interesting open challenges for future research. The concepts presented in this article thematically cover the largest part of the industrial automation pyramid layers. Our approach is multidisciplinary, as the selected publications were drawn from two fields; the communications, networking and computation field as well as the industrial, manufacturing and automation field. The article can help the readers to deeply understand how data management is currently applied in networked industrial environments, and select interesting open research opportunities to pursue

    Machine Intelligence Techniques for Next-Generation Context-Aware Wireless Networks

    Full text link
    The next generation wireless networks (i.e. 5G and beyond), which would be extremely dynamic and complex due to the ultra-dense deployment of heterogeneous networks (HetNets), poses many critical challenges for network planning, operation, management and troubleshooting. At the same time, generation and consumption of wireless data are becoming increasingly distributed with ongoing paradigm shift from people-centric to machine-oriented communications, making the operation of future wireless networks even more complex. In mitigating the complexity of future network operation, new approaches of intelligently utilizing distributed computational resources with improved context-awareness becomes extremely important. In this regard, the emerging fog (edge) computing architecture aiming to distribute computing, storage, control, communication, and networking functions closer to end users, have a great potential for enabling efficient operation of future wireless networks. These promising architectures make the adoption of artificial intelligence (AI) principles which incorporate learning, reasoning and decision-making mechanism, as natural choices for designing a tightly integrated network. Towards this end, this article provides a comprehensive survey on the utilization of AI integrating machine learning, data analytics and natural language processing (NLP) techniques for enhancing the efficiency of wireless network operation. In particular, we provide comprehensive discussion on the utilization of these techniques for efficient data acquisition, knowledge discovery, network planning, operation and management of the next generation wireless networks. A brief case study utilizing the AI techniques for this network has also been provided.Comment: ITU Special Issue N.1 The impact of Artificial Intelligence (AI) on communication networks and services, (To appear

    Energy and Information Management of Electric Vehicular Network: A Survey

    Full text link
    The connected vehicle paradigm empowers vehicles with the capability to communicate with neighboring vehicles and infrastructure, shifting the role of vehicles from a transportation tool to an intelligent service platform. Meanwhile, the transportation electrification pushes forward the electric vehicle (EV) commercialization to reduce the greenhouse gas emission by petroleum combustion. The unstoppable trends of connected vehicle and EVs transform the traditional vehicular system to an electric vehicular network (EVN), a clean, mobile, and safe system. However, due to the mobility and heterogeneity of the EVN, improper management of the network could result in charging overload and data congestion. Thus, energy and information management of the EVN should be carefully studied. In this paper, we provide a comprehensive survey on the deployment and management of EVN considering all three aspects of energy flow, data communication, and computation. We first introduce the management framework of EVN. Then, research works on the EV aggregator (AG) deployment are reviewed to provide energy and information infrastructure for the EVN. Based on the deployed AGs, we present the research work review on EV scheduling that includes both charging and vehicle-to-grid (V2G) scheduling. Moreover, related works on information communication and computing are surveyed under each scenario. Finally, we discuss open research issues in the EVN

    Towards combinatorial modeling of wireless technology generations

    Full text link
    The paper addresses the following problems: (1) a brief survey on wireless mobile communication technologies including evolution, history evolution (e.g., chain of system generations 0G, 1G, 2G, 3G, 4G, 5G, 6G, 7G); (2) using a hierarchical structural modular approach to the generations of the wireless communication systems (i.e., hierarchical combinatorial modeling of the communication technologies), (3) illustrative usage of two-stage combinatorial approach to improvement/forecasting of the communication technology (a version of 5G) (on the basis of multiple choice problem). Numerical examples illustrate the suggested combinatorial approach.Comment: 20 pages, 13 figures, 9 table

    Cyber Physical Systems: Prospects and Challenges

    Full text link
    Cyber physical systems CPSs embodies the conception as well as the implementation of the integration of the state-of-art technologies in sensing, communication, computing, and control. Such systems incorporate new trends such as cloud computing, mobile computing, mobile sensing, new modes of communications, wearables, etc. In this article we give an exposition of the architecture of a typical CPS system and the prospects of such systems in the development of the modern world. We illustrate the three major challenges faced by a CPS system: the need for rigorous numerical computation, the limitation of the current wireless communication bandwidth, and the computation/storage limitation by mobility and energy consumption. We address each one of these exposing the current techniques devised to solve each one of them

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    The Role of Cloud-MANET Framework in the Internet of Things (IoT)

    Full text link
    In the next generation of computing, Mobile ad-hoc network (MANET) will play a very important role in the Internet of Things (IoT). The MANET is a kind of wireless networks that are self-organizing and auto connected in a decentralized system. Every device in MANET can be moved freely from one location to another in any direction. They can create a network with their neighbors smart devices and forward data to another device. The IoT-Cloud-MANET framework of smart devices is composed of IoT, cloud computing, and MANET. This framework can access and deliver cloud services to the MANET users through their smart devices in the IoT framework where all computations, data handling, and resource management are performed. The smart devices can move from one location to another within the range of the MANET network. Various MANETs can connect to the same cloud, they can use cloud service in a real time. For connecting the smart device of MANET to cloud needs integration with mobile apps. My main contribution in this research links a new methodology for providing secure communication on the internet of smart devices using MANET Concept in 5G. The research methodology uses the correct and efficient simulation of the desired study and can be implemented in a framework of the Internet of Things in 5G.Comment: arXiv admin note: text overlap with arXiv:1902.0974

    Air-Ground Integrated Mobile Edge Networks: Architecture, Challenges and Opportunities

    Full text link
    The ever-increasing mobile data demands have posed significant challenges in the current radio access networks, while the emerging computation-heavy Internet of things (IoT) applications with varied requirements demand more flexibility and resilience from the cloud/edge computing architecture. In this article, to address the issues, we propose a novel air-ground integrated mobile edge network (AGMEN), where UAVs are flexibly deployed and scheduled, and assist the communication, caching, and computing of the edge network. In specific, we present the detailed architecture of AGMEN, and investigate the benefits and application scenarios of drone-cells, and UAV-assisted edge caching and computing. Furthermore, the challenging issues in AGMEN are discussed, and potential research directions are highlighted.Comment: Accepted by IEEE Communications Magazine. 5 figure

    Delay constrained Energy Optimization for Edge Cloud Offloading

    Full text link
    Resource limited user-devices may offload computation to a cloud server, in order to reduce power consumption and lower the execution time. However, to communicate to the cloud server over a wireless channel, additional energy is consumed for transmitting the data. Also a delay is introduced for offloading the data and receiving the response. Therefore, an optimal decision needs to be made that would reduce the energy consumption, while simultaneously satisfying the delay constraint. In this paper, we obtain an optimal closed form solution for these decision variables in a multi-user scenario. Furthermore, we optimally allocate the cloud server resources to the user devices, and evaluate the minimum delay that the system can provide, for a given bandwidth and number of user devices.Comment: Published in ICC workshop 201

    Generalized Sparse and Low-Rank Optimization for Ultra-Dense Networks

    Full text link
    Ultra-dense network (UDN) is a promising technology to further evolve wireless networks and meet the diverse performance requirements of 5G networks. With abundant access points, each with communication, computation and storage resources, UDN brings unprecedented benefits, including significant improvement in network spectral efficiency and energy efficiency, greatly reduced latency to enable novel mobile applications, and the capability of providing massive access for Internet of Things (IoT) devices. However, such great promises come with formidable research challenges. To design and operate such complex networks with various types of resources, efficient and innovative methodologies will be needed. This motivates the recent introduction of highly structured and generalizable models for network optimization. In this article, we present some recently proposed large-scale sparse and low-rank frameworks for optimizing UDNs, supported by various motivating applications. A special attention is paid on algorithmic approaches to deal with nonconvex objective functions and constraints, as well as computational scalability.Comment: This paper has been accepted by IEEE Communication Magazine, Special Issue on Heterogeneous Ultra Dense Network
    • …
    corecore