245,742 research outputs found

    Utilizing Remote Sensing and Digital Image Processing to Delineate the Structural Features in the Eastern Part of the Dead Sea, Jordan

    Get PDF
    Digital image processing techniques were used for mapping structural features using a medium resolution image (ETM+) from Landsat 7. The aim of this study is to utilize remote sensed data and digital image processing techniques for updating the structural map in the north eastern part of the Dead Sea (Ma’in area), Jordan. The study area is becoming an important target for geological survey activities, mineral exploration and industrial investment. This area was chosen for conducting a study based on satellite imagery interpretation of Landsat Thematic Mapper (ETM+). A special attention has been given in this study to the textural analysis techniques and the methods of image enhancements of Landsat (ETM+) images. As a result, a new lineament map was produced that represents the subsurface geological features and structures using visual interpretation and digital image processing by utilizing different enhancement techniques. A map showing the old structural features at a sub-regional scale has been produced together with a map showing the new structural features as interpreted from Thematic Mapper images

    Underwater Drone Architecture for Marine Digital Twin: Lessons Learned from SUSHI DROP Project

    Get PDF
    The ability to observe the world has seen significant developments in the last few decades, alongside the techniques and methodologies to derive accurate digital replicas of observed environments. Underwater ecosystems present greater challenges and remain largely unexplored, but the need for reliable and up-to-date information motivated the birth of the Interreg Italy-Croatia SUSHI DROP Project (SUstainable fiSHeries wIth DROnes data Processing). The aim of the project is to map ecosystems for sustainable fishing and to achieve this goal a prototype of an Unmanned Underwater Vehicle (UUV), named Blucy, has been designed and developed. Blucy was deployed during project missions for surveying the benthic zone in deep waters of the Adriatic Sea with non-invasive techniques compared to the use of trawl nets. This article describes the strategies followed, the instruments applied and the challenges to be overcome to obtain an accurately georeferenced underwater survey with the goal of creating a marine digital twin

    Underwater Drone Architecture for Marine Digital Twin: Lessons Learned from SUSHI DROP Project

    Get PDF
    The ability to observe the world has seen significant developments in the last few decades, alongside the techniques and methodologies to derive accurate digital replicas of observed environments. Underwater ecosystems present greater challenges and remain largely unexplored, but the need for reliable and up-to-date information motivated the birth of the Interreg Italy–Croatia SUSHI DROP Project (SUstainable fiSHeries wIth DROnes data Processing). The aim of the project is to map ecosystems for sustainable fishing and to achieve this goal a prototype of an Unmanned Underwater Vehicle (UUV), named Blucy, has been designed and developed. Blucy was deployed during project missions for surveying the benthic zone in deep waters of the Adriatic Sea with noninvasive techniques compared to the use of trawl nets. This article describes the strategies followed, the instruments applied and the challenges to be overcome to obtain an accurately georeferenced underwater survey with the goal of creating a marine digital twin

    Remote sensing satellite image processing techniques for image classification: a comprehensive survey

    Get PDF
    This paper is a brief survey of advance technological aspects of Digital Image Processing which are applied to remote sensing images obtained from various satellite sensors. In remote sensing, the image processing techniques can be categories in to four main processing stages: Image preprocessing, Enhancement, Transformation and Classification. Image pre-processing is the initial processing which deals with correcting radiometric distortions, atmospheric distortion and geometric distortions present in the raw image data. Enhancement techniques are applied to preprocessed data in order to effectively display the image for visual interpretation. It includes techniques to effectively distinguish surface features for visual interpretation. Transformation aims to identify particular feature of earth’s surface and classification is a process of grouping the pixels, that produces effective thematic map of particular land use and land cover

    Raster data structures and topographic data

    Get PDF
    The use of computers to assist in map-making has been growing for two decades; their speed of operation, large data storage capacity and flexibility of usage have been major factors in establishing many development and working computer mapping systems throughout the world. In Britain, the Ordnance Survey has supported a digital solution to the production, storage and display of large scale topographic maps since 1972. Until now, the work of the Ordnance Survey - and, indeed, most topographic map-makers in Britain who are investigating digital techniques - have adopted a vector-based strategy to digital mapping in which the data are held as a series of coordinate-points describing the lines shown on the map images. Comparatively little work has been undertaken in Britain on the use of raster-based methods of data capture and storage in which map images are resolved into arrays of small cells or picture elements by appropriately tuned scanning devices. This alternative strategy is known - from work carried out in other countries, chiefly the United States - to be suitable for some types of data manipulation, although its suitability for Ordnance Survey mapping applications is unknown. Very little investigation has been made anywhere in the world of the manipulation of raster data structures by the recently developed array processor computers; almost all existing work is restricted to the use of traditional serial machines. This thesis reports on a three year study carried out in the University of Durham to investigate the applicability of raster data processing for the work of the British national mapping organisation. In particular, it describes the distinction between vector and raster applications with geographic data and the likely characteristics of suitable raster data structures on both serial and parallel computers. A section is also included which describes the nature of scanning trials carried out on a number of commercial devices; it has thus been possible to assess not only the likely advantages and limitations of handling British large-scale map data in raster form but also its technical feasibility. The work reports on the likely volumes of data to be expected and describes parallel algorithms for operations such as polygon creation (and, indirectly, the creation of node and link vector files)

    Overcoming the Challenges Associated with Image-based Mapping of Small Bodies in Preparation for the OSIRIS-REx Mission to (101955) Bennu

    Get PDF
    The OSIRIS-REx Asteroid Sample Return Mission is the third mission in NASA's New Frontiers Program and is the first U.S. mission to return samples from an asteroid to Earth. The most important decision ahead of the OSIRIS-REx team is the selection of a prime sample-site on the surface of asteroid (101955) Bennu. Mission success hinges on identifying a site that is safe and has regolith that can readily be ingested by the spacecraft's sampling mechanism. To inform this mission-critical decision, the surface of Bennu is mapped using the OSIRIS-REx Camera Suite and the images are used to develop several foundational data products. Acquiring the necessary inputs to these data products requires observational strategies that are defined specifically to overcome the challenges associated with mapping a small irregular body. We present these strategies in the context of assessing candidate sample-sites at Bennu according to a framework of decisions regarding the relative safety, sampleability, and scientific value across the asteroid's surface. To create data products that aid these assessments, we describe the best practices developed by the OSIRIS-REx team for image-based mapping of irregular small bodies. We emphasize the importance of using 3D shape models and the ability to work in body-fixed rectangular coordinates when dealing with planetary surfaces that cannot be uniquely addressed by body-fixed latitude and longitude.Comment: 31 pages, 10 figures, 2 table

    Virtual geological outcrops - fieldwork and analysis made less exhaustive?

    Get PDF
    For geologists studying outcrops in the field, there is an ever‐increasing need for the acquisition of accurate and comprehensive data, whatever their purpose. Fortunately, this need is mirrored by an expanding range of digital data capturing technologies that provide the possibility of examining geological outcrops in minute detail from the desktop. Although difficult technologically, there is also a need to combine differing datasets into a single, accurate, digital model that will allow field geologists to place their data in a wider context. This paper examines the techniques available, and highlights new Light Detection and Ranging (LIDAR) technology which should prove to be a unifying technique, being able to combine images and local coordinates on‐site
    • 

    corecore