163,494 research outputs found

    Developing BP-driven web application through the use of MDE techniques

    Full text link
    Model driven engineering (MDE) is a suitable approach for performing the construction of software systems (in particular in the Web application domain). There are different types of Web applications depending on their purpose (i.e., document-centric, interactive, transactional, workflow/business process-based, collaborative, etc). This work focusses on business process-based Web applications in order to be able to understand business processes in a broad sense, from the lightweight business processes already addressed by existing proposals to long-running asynchronous processes. This work presents a MDE method for the construction of systems of this type. The method has been designed in two steps following the MDE principles. In the first step, the system is represented by means of models in a technology-independent manner. These models capture the different aspects of Web-based systems (these aspects refer to behaviour, structure, navigation, and presentation issues). In the second step, the model transformations (both model-to- model and model-to-text) are applied in order to obtain the final system in terms of a specific technology. In addition, a set ofEclipse-based tools has been developed to provide automation in the application of the proposed method in order to validate the proposal.Torres Bosch, MV.; Giner Blasco, P.; Pelechano Ferragud, V. (2012). Developing BP-driven web application through the use of MDE techniques. Software and Systems Modeling. 11(4):609-631. doi:10.1007/s10270-010-0177-5S609631114Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business process execution language for Web services version 1.1 (May 2003)Barna, P., Frasincar, F., Houben, G.J.: A workow-driven design of Web information systems. In: Wolber, D., Calder, N., Brooks, C., Ginige, A. (eds.) ICWE, ACM, pp. 321–328Bakshi, K., Karger, D.R.: Semantic Web applications. In: Proceedings of the ISWC 2005 Workshop on End User Semantic Web Interaction (November 2005)Brambilla M., Ceri S., Fraternali P., Manolescu I.: Process modeling in Web applications. ACM Trans. Softw. Eng. Methodol. 15(4), 360–409 (2006)Brambilla, M., Preciado, J.C., Trigueros, M.L., Sánchez-Figueroa F.: Business process-based conceptual design of rich internet applications. In: ICWE, pp. 155–161 (2008)Brambilla, M., Butti, S., Fraternali, P.: Webratio bpm: a tool for designing and deploying business processes on the Web. In: ICWE, pp. 415–429 (2010)Business process modeling notation (BPMN). OMG final adopted specification. dtc/06-02-01 (February 2006)Ceri, S., Fraternali, P., Bongio, A.: Web modeling language (Webml): a modeling language for designing Web sites. In: Proceedings of the 9th international World Wide Web conference on Computer networks : the international journal of computer and telecommunications networking, Amsterdam, The Netherlands, pp. 137–157. North-Holland Publishing Co., The Netherlands (2000)Davis J.: Open Source SOA. Manning Publications Co, Greenwich (2009)Distante, D.: Reengineering legacy applications and Web transactions: an extended version of the UWA transaction design model. Ph.D. thesis, University of Lecce, Italy (2004)Distante D., Rossi G., Canfora G., Tilley S.R.: A comprehensive design model for integrating business processes in Web applications. Int. J. Web Eng. Technol. 3(1), 43–72 (2007)Duhl, J.: Rich internet applications. Technical report, IDC (November 2003)Fons, J.: OOWS: A model driven method for the development of web applications. Ph.D. thesis, Universidad Politécnica de Valencia (2008)Fons, J., Pelechano, V., Pastor, O., Valderas, P., Torres, V.: Applying the OOWS model-driven approach for developing web applications. The internet movie database case study. In: Web Engineering: Modelling and Implementing Web Applications. Human–Computer Interaction Series, pp. 65–108. Springer, London (2008)Fowler, M.: Inversion of control containers and the dependency injection pattern. http://martinfowler.com/articles/injection.html (January 2004)Gershenfeld N., Krikorian R., Cohen D.: The internet of things. Sci Am 291(4), 76–81 (2004)Giner P., Cetina C., Fons J., Pelechano V.: Developing mobile business processes for the internet of things. IEEE Pervasive Comput. 9, 18–26 (2010)Gómez J., Cachero C., Pastor O.: Extending a conceptual modelling approach to Web application design. In: Wangler, B., Bergman, L. (eds) CAiSE. Lecture Notes in Computer Science, vol. 1789, pp. 79–93. Springer, London (2000)Goth G.: The task-based interface: not your father’s desktop. IEEE Software 26(6), 88–91 (2009)Holmes, T., Tran, H., Zdun, U., Dustdar, S.: Modeling human aspects of business processes—a view-based, model-driven approach. In: ECMDA-FA, pp. 246–261 (2008)Kappel, G., Pröll, B., Reich, S., Retschitzegger, W. (eds): Web Engineering—The Discipline of Systematic Development of Web Applications. Wiley, England (2006)Koch, N.: Software Engineering for Adaptive Hypermedia Systems: Reference Model, Modeling Techniques and Development Process. Ph.D. thesis, Ludwig-Maximilians-University Munich, Germany (2001)Koch N., Kraus A., Cachero C., Meliá S.: Integration of business processes in Web application models. J. Web Eng. 3(1), 22–49 (2004)Limbourg, Q., Vanderdonckt, J.: Usixml: a user interface description language supporting multiple levels of independence. In: ICWE Workshops, pp. 325–338 (2004)Linaje M., Preciado J.C., Sánchez-Figueroa F.: Engineering rich internet application user interfaces over legacy Web models. IEEE Internet Comput. 11(6), 53–59 (2007)Link, S., Hoyer, P., Schuster, T., Abeck, S.: Model-driven development of human tasks for workflows. In: ICSEA ‘08: Proceedings of the 2008 third international conference on software engineering advances, Washington, DC, USA, pp. 329–335. IEEE Computer Society, Washington, DC (2008)Marcos, E., Cáceres, P., Castro, V. D.: An approach for navigation model construction from the use cases model. In: CAiSE Forum. Held in conjunction with the 16th Conference On Advanced Information Systems Engineering (June 2004)Pietschmann, S., Voigt, M., Meissner, K.: Adaptive rich user interfaces for human interaction in business processes. In: Proceedings of the 10th International Conference on Web Information Systems Engineering (WISE 2009), WISE, pp. 351–364. Springer LNCS (October 2009)Schwabe D., Rossi G.: An object oriented approach to Web-based applications design. Theor. Pract. Object Syst. 4(4), 207–225 (1998)Schmid H.A., Rossi G.: Modeling and designing processes in e-commerce applications. IEEE Internet Comput. 8(1), 19–27 (2004)Schwinger W., Retschitzegger W., Schauerhuber A., Kappel G., Wimmer M., Pröll B., Cachero C., Casteleyn S., Troyer O.D., Fraternali P., Garrigós I., Garzotto F., Ginige A., Houben G.J., Koch N., Moreno N., Pastor O., Paolini P., Pelechano V., Rossi G., Schwabe D., Tisi M., Vallecillo A., van der Sluijs K., Zhang G.: A survey on Web modeling approaches for ubiquitous Web applications. IJWIS 4(3), 234–305 (2008)Sousa K.S., Mendona H., Vanderdonckt J.: A model-driven approach to align business processes with user interfaces. J. UCS 14(19), 3236–3249 (2008)Sukaviriya, N., Sinha, V., Ramachandra, T., Mani, S.: Model-driven approach for managing human interface design life cycle. In: MoDELS, pp. 226–240 (2007)Tedre M.: What should be automated?. Interactions 15(5), 47–49 (2008)Torres, V., Giner, P., Bonet, B., Pelechano, V.: Adapting BPMN to Public Administration. In: Proceedings BPMN 2010 Springer’s Lecture Notes in Business Information Processing (LNBIP). Postdam, Germany (to appear)Troyer, O.D., Casteleyn, S.: Modeling complex processes for Web applications using wsdm. In: Proceedings of the Third International Workshop on Web-Oriented Software Technologies (held in conjunction with ICWE2003), IWWOST2003 (2003

    From Frequency to Meaning: Vector Space Models of Semantics

    Full text link
    Computers understand very little of the meaning of human language. This profoundly limits our ability to give instructions to computers, the ability of computers to explain their actions to us, and the ability of computers to analyse and process text. Vector space models (VSMs) of semantics are beginning to address these limits. This paper surveys the use of VSMs for semantic processing of text. We organize the literature on VSMs according to the structure of the matrix in a VSM. There are currently three broad classes of VSMs, based on term-document, word-context, and pair-pattern matrices, yielding three classes of applications. We survey a broad range of applications in these three categories and we take a detailed look at a specific open source project in each category. Our goal in this survey is to show the breadth of applications of VSMs for semantics, to provide a new perspective on VSMs for those who are already familiar with the area, and to provide pointers into the literature for those who are less familiar with the field
    • …
    corecore