71,195 research outputs found

    Methods for many-objective optimization: an analysis

    Get PDF
    Decomposition-based methods are often cited as the solution to problems related with many-objective optimization. Decomposition-based methods employ a scalarizing function to reduce a many-objective problem into a set of single objective problems, which upon solution yields a good approximation of the set of optimal solutions. This set is commonly referred to as Pareto front. In this work we explore the implications of using decomposition-based methods over Pareto-based methods from a probabilistic point of view. Namely, we investigate whether there is an advantage of using a decomposition-based method, for example using the Chebyshev scalarizing function, over Paretobased methods

    Scalarizing Functions in Bayesian Multiobjective Optimization

    Get PDF
    Scalarizing functions have been widely used to convert a multiobjective optimization problem into a single objective optimization problem. However, their use in solving (computationally) expensive multi- and many-objective optimization problems in Bayesian multiobjective optimization is scarce. Scalarizing functions can play a crucial role on the quality and number of evaluations required when doing the optimization. In this article, we study and review 15 different scalarizing functions in the framework of Bayesian multiobjective optimization and build Gaussian process models (as surrogates, metamodels or emulators) on them. We use expected improvement as infill criterion (or acquisition function) to update the models. In particular, we compare different scalarizing functions and analyze their performance on several benchmark problems with different number of objectives to be optimized. The review and experiments on different functions provide useful insights when using and selecting a scalarizing function when using a Bayesian multiobjective optimization method

    Generalized decomposition and cross entropy methods for many-objective optimization

    Get PDF
    Decomposition-based algorithms for multi-objective optimization problems have increased in popularity in the past decade. Although their convergence to the Pareto optimal front (PF) is in several instances superior to that of Pareto-based algorithms, the problem of selecting a way to distribute or guide these solutions in a high-dimensional space has not been explored. In this work, we introduce a novel concept which we call generalized decomposition. Generalized decomposition provides a framework with which the decision maker (DM) can guide the underlying evolutionary algorithm toward specific regions of interest or the entire Pareto front with the desired distribution of Pareto optimal solutions. Additionally, it is shown that generalized decomposition simplifies many-objective problems by unifying the three performance objectives of multi-objective evolutionary algorithms – convergence to the PF, evenly distributed Pareto optimal solutions and coverage of the entire front – to only one, that of convergence. A framework, established on generalized decomposition, and an estimation of distribution algorithm (EDA) based on low-order statistics, namely the cross-entropy method (CE), is created to illustrate the benefits of the proposed concept for many objective problems. This choice of EDA also enables the test of the hypothesis that low-order statistics based EDAs can have comparable performance to more elaborate EDAs

    Increasing the density of available pareto optimal solutions

    Get PDF
    The set of available multi-objective optimization algorithms continues to grow. This fact can be partially attributed to their widespread use and applicability. However this increase also suggests several issues remain to be addressed satisfactorily. One such issue is the diversity and the number of solutions available to the decision maker (DM). Even for algorithms very well suited for a particular problem, it is difficult - mainly due to the computational cost - to use a population large enough to ensure the likelihood of obtaining a solution close to the DMs preferences. In this paper we present a novel methodology that produces additional Pareto optimal solutions from a Pareto optimal set obtained at the end run of any multi-objective optimization algorithm. This method, which we refer to as Pareto estimation, is tested against a set of 2 and 3-objective test problems and a 3-objective portfolio optimization problem to illustrate its’ utility for a real-world problem
    • …
    corecore