19,275 research outputs found

    A Review of integrity constraint maintenance and view updating techniques

    Get PDF
    Two interrelated problems may arise when updating a database. On one hand, when an update is applied to the database, integrity constraints may become violated. In such case, the integrity constraint maintenance approach tries to obtain additional updates to keep integrity constraints satisfied. On the other hand, when updates of derived or view facts are requested, a view updating mechanism must be applied to translate the update request into correct updates of the underlying base facts. This survey reviews the research performed on integrity constraint maintenance and view updating. It is proposed a general framework to classify and to compare methods that tackle integrity constraint maintenance and/or view updating. Then, we analyze some of these methods in more detail to identify their actual contribution and the main limitations they may present.Postprint (published version

    A Rational and Efficient Algorithm for View Revision in Databases

    Full text link
    The dynamics of belief and knowledge is one of the major components of any autonomous system that should be able to incorporate new pieces of information. In this paper, we argue that to apply rationality result of belief dynamics theory to various practical problems, it should be generalized in two respects: first of all, it should allow a certain part of belief to be declared as immutable; and second, the belief state need not be deductively closed. Such a generalization of belief dynamics, referred to as base dynamics, is presented, along with the concept of a generalized revision algorithm for Horn knowledge bases. We show that Horn knowledge base dynamics has interesting connection with kernel change and abduction. Finally, we also show that both variants are rational in the sense that they satisfy certain rationality postulates stemming from philosophical works on belief dynamics

    Coherent Integration of Databases by Abductive Logic Programming

    Full text link
    We introduce an abductive method for a coherent integration of independent data-sources. The idea is to compute a list of data-facts that should be inserted to the amalgamated database or retracted from it in order to restore its consistency. This method is implemented by an abductive solver, called Asystem, that applies SLDNFA-resolution on a meta-theory that relates different, possibly contradicting, input databases. We also give a pure model-theoretic analysis of the possible ways to `recover' consistent data from an inconsistent database in terms of those models of the database that exhibit as minimal inconsistent information as reasonably possible. This allows us to characterize the `recovered databases' in terms of the `preferred' (i.e., most consistent) models of the theory. The outcome is an abductive-based application that is sound and complete with respect to a corresponding model-based, preferential semantics, and -- to the best of our knowledge -- is more expressive (thus more general) than any other implementation of coherent integration of databases

    Visualizing SQL Execution Traces for Program Comprehension

    Get PDF

    A New Rational Algorithm for View Updating in Relational Databases

    Full text link
    The dynamics of belief and knowledge is one of the major components of any autonomous system that should be able to incorporate new pieces of information. In order to apply the rationality result of belief dynamics theory to various practical problems, it should be generalized in two respects: first it should allow a certain part of belief to be declared as immutable; and second, the belief state need not be deductively closed. Such a generalization of belief dynamics, referred to as base dynamics, is presented in this paper, along with the concept of a generalized revision algorithm for knowledge bases (Horn or Horn logic with stratified negation). We show that knowledge base dynamics has an interesting connection with kernel change via hitting set and abduction. In this paper, we show how techniques from disjunctive logic programming can be used for efficient (deductive) database updates. The key idea is to transform the given database together with the update request into a disjunctive (datalog) logic program and apply disjunctive techniques (such as minimal model reasoning) to solve the original update problem. The approach extends and integrates standard techniques for efficient query answering and integrity checking. The generation of a hitting set is carried out through a hyper tableaux calculus and magic set that is focused on the goal of minimality.Comment: arXiv admin note: substantial text overlap with arXiv:1301.515

    View maintenance and change notification for application program views

    Full text link
    • …
    corecore