955 research outputs found

    Music information retrieval: conceptuel framework, annotation and user behaviour

    Get PDF
    Understanding music is a process both based on and influenced by the knowledge and experience of the listener. Although content-based music retrieval has been given increasing attention in recent years, much of the research still focuses on bottom-up retrieval techniques. In order to make a music information retrieval system appealing and useful to the user, more effort should be spent on constructing systems that both operate directly on the encoding of the physical energy of music and are flexible with respect to users’ experiences. This thesis is based on a user-centred approach, taking into account the mutual relationship between music as an acoustic phenomenon and as an expressive phenomenon. The issues it addresses are: the lack of a conceptual framework, the shortage of annotated musical audio databases, the lack of understanding of the behaviour of system users and shortage of user-dependent knowledge with respect to high-level features of music. In the theoretical part of this thesis, a conceptual framework for content-based music information retrieval is defined. The proposed conceptual framework - the first of its kind - is conceived as a coordinating structure between the automatic description of low-level music content, and the description of high-level content by the system users. A general framework for the manual annotation of musical audio is outlined as well. A new methodology for the manual annotation of musical audio is introduced and tested in case studies. The results from these studies show that manually annotated music files can be of great help in the development of accurate analysis tools for music information retrieval. Empirical investigation is the foundation on which the aforementioned theoretical framework is built. Two elaborate studies involving different experimental issues are presented. In the first study, elements of signification related to spontaneous user behaviour are clarified. In the second study, a global profile of music information retrieval system users is given and their description of high-level content is discussed. This study has uncovered relationships between the users’ demographical background and their perception of expressive and structural features of music. Such a multi-level approach is exceptional as it included a large sample of the population of real users of interactive music systems. Tests have shown that the findings of this study are representative of the targeted population. Finally, the multi-purpose material provided by the theoretical background and the results from empirical investigations are put into practice in three music information retrieval applications: a prototype of a user interface based on a taxonomy, an annotated database of experimental findings and a prototype semantic user recommender system. Results are presented and discussed for all methods used. They show that, if reliably generated, the use of knowledge on users can significantly improve the quality of music content analysis. This thesis demonstrates that an informed knowledge of human approaches to music information retrieval provides valuable insights, which may be of particular assistance in the development of user-friendly, content-based access to digital music collections

    Symbolic Music Representations for Classification Tasks: A Systematic Evaluation

    Full text link
    Music Information Retrieval (MIR) has seen a recent surge in deep learning-based approaches, which often involve encoding symbolic music (i.e., music represented in terms of discrete note events) in an image-like or language like fashion. However, symbolic music is neither an image nor a sentence, and research in the symbolic domain lacks a comprehensive overview of the different available representations. In this paper, we investigate matrix (piano roll), sequence, and graph representations and their corresponding neural architectures, in combination with symbolic scores and performances on three piece-level classification tasks. We also introduce a novel graph representation for symbolic performances and explore the capability of graph representations in global classification tasks. Our systematic evaluation shows advantages and limitations of each input representation. Our results suggest that the graph representation, as the newest and least explored among the three approaches, exhibits promising performance, while being more light-weight in training

    LooPy: A Research-Friendly Mix Framework for Music Information Retrieval on Electronic Dance Music

    Full text link
    Music information retrieval (MIR) has gone through an explosive development with the advancement of deep learning in recent years. However, music genres like electronic dance music (EDM) has always been relatively less investigated compared to others. Considering its wide range of applications, we present a Python package for automated EDM audio generation as an infrastructure for MIR for EDM songs, to mitigate the difficulty of acquiring labelled data. It is a convenient tool that could be easily concatenated to the end of many symbolic music generation pipelines. Inside this package, we provide a framework to build professional-level templates that could render a well-produced track from specified melody and chords, or produce massive tracks given only a specific key by our probabilistic symbolic melody generator. Experiments show that our mixes could achieve the same quality of the original reference songs produced by world-famous artists, with respect to both subjective and objective criteria. Our code is accessible in this repository: https://github.com/Gariscat/loopy and the official site of the project is also online https://loopy4edm.com .Comment: Submitted to ACM MM 202

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    On the Adoption of Standard Encoding Formats to Ensure Interoperability of Music Digital Archives: The IEEE 1599 Format

    Get PDF
    With this paper, we want to stimulate the discussion about technologies for inter-operation between various music datasets and collections. Among the many standards for music representation, IEEE 1599 is the only one which was born with the exact purpose of representing the heterogeneous structures of music documents, granting full synchronization of all the different aspects of music (audio recordings, sheet music images, symbolic representations, musicological analysis, etc). We propose the adoption of IEEE 1599 as an interoperability framework between different collections for advanced music experience, musicological applications, and Music Information Retrieval (MIR). In the years to come, the format will undergo a review process aimed at providing an updated/improved version. It is now the perfect time, for all the stakeholders, to come together and discuss how the format can evolve to better support their requirements, enhancing its descriptive strength and available tools. Moreover, this standard can be profitably applied to any field that requires multi-layer and synchronized descriptions

    Logic-based Modelling of Musical Harmony for Automatic Characterisation and Classification

    Get PDF
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the authorMusic like other online media is undergoing an information explosion. Massive online music stores such as the iTunes Store1 or Amazon MP32, and their counterparts, the streaming platforms, such as Spotify3, Rdio4 and Deezer5, offer more than 30 million6 pieces of music to their customers, that is to say anybody with a smart phone. Indeed these ubiquitous devices offer vast storage capacities and cloud-based apps that can cater any music request. As Paul Lamere puts it7: “we can now have a virtually endless supply of music in our pocket. The ‘bottomless iPod’ will have as big an effect on how we listen to music as the original iPod had back in 2001. But with millions of songs to chose from, we will need help finding music that we want to hear [...]. We will need new tools that help us manage our listening experience.” Retrieval, organisation, recommendation, annotation and characterisation of musical data is precisely what the Music Information Retrieval (MIR) community has been working on for at least 15 years (Byrd and Crawford, 2002). It is clear from its historical roots in practical fields such as Information Retrieval, Information Systems, Digital Resources and Digital Libraries but also from the publications presented at the first International Symposium on Music Information Retrieval in 2000 that MIR has been aiming to build tools to help people to navigate, explore and make sense of music collections (Downie et al., 2009). That also includes analytical tools to suppor
    corecore