21,078 research outputs found

    Planetary Nebulae Detected in the Spitzer Space Telescope GLIMPSE 3D Legacy Survey

    Get PDF
    We used the data from the Spitzer Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) to investigate the mid-infrared (MIR) properties of planetary nebulae (PNs) and PN candidates. In previous studies of GLIMPSE I& II data, we have shown that these MIR data are very useful in distinguishing PNs from other emission-line objects. In the present paper, we focus on the PNs in the field of the GLIMPSE 3D survey, which has a more extensive latitude coverage. We found a total of 90 Macquarie-AAO-Strasbourg (MASH) and MASH II PNs and 101 known PNs to have visible MIR counterparts in the GLIMPSE 3D survey area. The images and photometry of these PNs are presented. Combining the derived IRAC photometry at 3.6, 4.5, 5.8, 8.0 um with the existing photometric measurements from other infrared catalogs, we are able to construct spectral energy distributions (SEDs) of these PNs. Among the most notable objects in this survey is the PN M1-41, whose GLIMPSE 3D image reveals a large bipolar structure of more than 3 arcmin in extent.Comment: 43 page3, 13 figures, Accepted for publication in Ap

    Three-dimensional reconstruction of a masonry building through electrical and seismic tomography validated by biological analyses

    Get PDF
    In this paper, we present an integrated approach, for assessing the condition of an ancient Roman building, affected by rising damp and cracking phenomena. The combination of high-resolution geophysical methods, such as seismic and electrical tomography, with biological information, allowed a more detailed evaluation of the state of conservation of the masonry building. A preliminary three-dimensional electrical survey was conducted to detect the existing building foundations and to determine the variation of the resistivity in the ground. Then, electrical and seismic tomography investigations were carried out on an inner wall of opus caementicium, subjected to rising damp effects and cracks. This approach was adopted to obtain a high-resolution image of the wall, which allowed to identify the inner mortar and the outer brick component from resistivity and velocity contrasts. Furthermore, the geophysical results revealed evidence of wall fractures (indicated by low velocity and high resistivity values) and a significant volume where rising of damp was taking place (resulting in a low resistivity zone). Biological analyses validated the geophysical model: in fact, the biological proliferation occurred up to a height of 0.75 m, where the interface between high and low resistivity values was recovered. This approach can be employed to reconstruct a three-dimensional model of masonry structures in order to plan recovery actions

    On the internal structure of starless cores. II. A molecular survey of L1498 and L1517B

    Get PDF
    [Abridged] We present a molecular survey of the starless cores L1498 and L1517B. These cores have been selected for their relative isolation and close-to-round shape, and they have been observed in a number of lines of 13 molecular species (4 already presented in the first part of this series): CO, CS, N2H+, NH3, CH3OH, SO, C3H2, HC3N, C2S, HCN, H2CO, HCO+, and DCO+. Using a physical model of core structure and a Monte Carlo radiative transfer code, we determine for each core a self-consistent set abundances that fits simultaneously the observed radial profile of integrated intensity and the emergent spectrum towards the core center (for abundant species, optically thin isopologues are used). From this work, we find that L1498 and L1517B have similar abundance patterns, with most species suffering a significant drop toward the core center. This occurs for CO, CS, CH3OH, SO, C3H2, HC3N, C2S, HCN, H2CO, HCO+, and DCO+, which we fit with profiles having a sharp central hole. The size of this hole varies with molecule: DCO+, HCN, and HC3N have the smallest holes while SO, C2S and CO have the largest holes. Only N2H+ and NH3 are present in the gas phase at the core centers. From the different behavior of molecules, we select SO, C2S, and CH3OH as the most sensitive tracers of molecular depletion. Comparing our abundance determinations with the predictions from current chemical models we find order of magnitude discrepancies. Finally, we show how the ``contribution function'' can be used to study the formation of line profiles from the different regions of a core.Comment: 22 pages, 12 figures, A&A accepte
    • …
    corecore