704 research outputs found

    Indexability, concentration, and VC theory

    Get PDF
    Degrading performance of indexing schemes for exact similarity search in high dimensions has long since been linked to histograms of distributions of distances and other 1-Lipschitz functions getting concentrated. We discuss this observation in the framework of the phenomenon of concentration of measure on the structures of high dimension and the Vapnik-Chervonenkis theory of statistical learning.Comment: 17 pages, final submission to J. Discrete Algorithms (an expanded, improved and corrected version of the SISAP'2010 invited paper, this e-print, v3

    Q-learning with Nearest Neighbors

    Full text link
    We consider model-free reinforcement learning for infinite-horizon discounted Markov Decision Processes (MDPs) with a continuous state space and unknown transition kernel, when only a single sample path under an arbitrary policy of the system is available. We consider the Nearest Neighbor Q-Learning (NNQL) algorithm to learn the optimal Q function using nearest neighbor regression method. As the main contribution, we provide tight finite sample analysis of the convergence rate. In particular, for MDPs with a dd-dimensional state space and the discounted factor γ∈(0,1)\gamma \in (0,1), given an arbitrary sample path with "covering time" L L , we establish that the algorithm is guaranteed to output an ε\varepsilon-accurate estimate of the optimal Q-function using O~(L/(ε3(1−γ)7))\tilde{O}\big(L/(\varepsilon^3(1-\gamma)^7)\big) samples. For instance, for a well-behaved MDP, the covering time of the sample path under the purely random policy scales as O~(1/εd), \tilde{O}\big(1/\varepsilon^d\big), so the sample complexity scales as O~(1/εd+3).\tilde{O}\big(1/\varepsilon^{d+3}\big). Indeed, we establish a lower bound that argues that the dependence of Ω~(1/εd+2) \tilde{\Omega}\big(1/\varepsilon^{d+2}\big) is necessary.Comment: Accepted to NIPS 201

    Nearest Neighbor and Kernel Survival Analysis: Nonasymptotic Error Bounds and Strong Consistency Rates

    Full text link
    We establish the first nonasymptotic error bounds for Kaplan-Meier-based nearest neighbor and kernel survival probability estimators where feature vectors reside in metric spaces. Our bounds imply rates of strong consistency for these nonparametric estimators and, up to a log factor, match an existing lower bound for conditional CDF estimation. Our proof strategy also yields nonasymptotic guarantees for nearest neighbor and kernel variants of the Nelson-Aalen cumulative hazards estimator. We experimentally compare these methods on four datasets. We find that for the kernel survival estimator, a good choice of kernel is one learned using random survival forests.Comment: International Conference on Machine Learning (ICML 2019

    On Nonrigid Shape Similarity and Correspondence

    Full text link
    An important operation in geometry processing is finding the correspondences between pairs of shapes. The Gromov-Hausdorff distance, a measure of dissimilarity between metric spaces, has been found to be highly useful for nonrigid shape comparison. Here, we explore the applicability of related shape similarity measures to the problem of shape correspondence, adopting spectral type distances. We propose to evaluate the spectral kernel distance, the spectral embedding distance and the novel spectral quasi-conformal distance, comparing the manifolds from different viewpoints. By matching the shapes in the spectral domain, important attributes of surface structure are being aligned. For the purpose of testing our ideas, we introduce a fully automatic framework for finding intrinsic correspondence between two shapes. The proposed method achieves state-of-the-art results on the Princeton isometric shape matching protocol applied, as usual, to the TOSCA and SCAPE benchmarks
    • …
    corecore