7,709 research outputs found

    ELICA: An Automated Tool for Dynamic Extraction of Requirements Relevant Information

    Full text link
    Requirements elicitation requires extensive knowledge and deep understanding of the problem domain where the final system will be situated. However, in many software development projects, analysts are required to elicit the requirements from an unfamiliar domain, which often causes communication barriers between analysts and stakeholders. In this paper, we propose a requirements ELICitation Aid tool (ELICA) to help analysts better understand the target application domain by dynamic extraction and labeling of requirements-relevant knowledge. To extract the relevant terms, we leverage the flexibility and power of Weighted Finite State Transducers (WFSTs) in dynamic modeling of natural language processing tasks. In addition to the information conveyed through text, ELICA captures and processes non-linguistic information about the intention of speakers such as their confidence level, analytical tone, and emotions. The extracted information is made available to the analysts as a set of labeled snippets with highlighted relevant terms which can also be exported as an artifact of the Requirements Engineering (RE) process. The application and usefulness of ELICA are demonstrated through a case study. This study shows how pre-existing relevant information about the application domain and the information captured during an elicitation meeting, such as the conversation and stakeholders' intentions, can be captured and used to support analysts achieving their tasks.Comment: 2018 IEEE 26th International Requirements Engineering Conference Workshop

    Managing contextual information in semantically-driven temporal information systems

    Get PDF
    Context-aware (CA) systems have demonstrated the provision of a robust solution for personalized information delivery in the current content-rich and dynamic information age we live in. They allow software agents to autonomously interact with users by modeling the userā€™s environment (e.g. profile, location, relevant public information etc.) as dynamically-evolving and interoperable contexts. There is a flurry of research activities in a wide spectrum at context-aware research areas such as managing the userā€™s profile, context acquisition from external environments, context storage, context representation and interpretation, context service delivery and matching of context attributes to usersā€˜ queries etc. We propose SDCAS, a Semantic-Driven Context Aware System that facilitates public services recommendation to users at temporal location. This paper focuses on information management and service recommendation using semantic technologies, taking into account the challenges of relationship complexity in temporal and contextual information

    The Cognitive Atlas: Employing Interaction Design Processes to Facilitate Collaborative Ontology Creation

    Get PDF
    The Cognitive Atlas is a collaborative knowledge-building project that aims to develop an ontology that characterizes the current conceptual framework among researchers in cognitive science and neuroscience. The project objectives from the beginning focused on usability, simplicity, and utility for end users. Support for Semantic Web technologies was also a priority in order to support interoperability with other neuroscience projects and knowledge bases. Current off-the-shelf semantic web or semantic wiki technologies, however, do not often lend themselves to simple user interaction designs for non-technical researchers and practitioners; the abstract nature and complexity of these systems acts as point of friction for user interaction, inhibiting usability and utility. Instead, we take an alternate interaction design approach driven by user centered design processes rather than a base set of semantic technologies. This paper reviews the initial two rounds of design and development of the Cognitive Atlas system, including interactive design decisions and their implementation as guided by current industry practices for the development of complex interactive systems

    Ontology modelling methodology for temporal and interdependent applications

    Get PDF
    The increasing adoption of Semantic Web technology by several classes of applications in recent years, has made ontology engineering a crucial part of application development. Nowadays, the abundant accessibility of interdependent information from multiple resources and representing various fields such as health, transport, and banking etc., further evidence the growing need for utilising ontology for the development of Web applications. While there have been several advances in the adoption of the ontology for application development, less emphasis is being made on the modelling methodologies for representing modern-day application that are characterised by the temporal nature of the data they process, which is captured from multiple sources. Taking into account the benefits of a methodology in the system development, we propose a novel methodology for modelling ontologies representing Context-Aware Temporal and Interdependent Systems (CATIS). CATIS is an ontology development methodology for modelling temporal interdependent applications in order to achieve the desired results when modelling sophisticated applications with temporal and inter dependent attributes to suit today's application requirements

    Using ontologies to support and critique decisions

    No full text
    Supporting decision making in the working environment has long being pursued by practitioners across a variety of fields, ranging from sociology and operational research to cognitive and computer scientists. A number of computer-supported systems and various technologies have been used over the years, but as we move into more global and flexible organisational structures, new technologies and challenges arise. In this paper, I argue for an ontology-based solution and present some of the early prototypes we have been developing, assess their impact on the decision making process and elaborate on the costs involved

    The Requirements for Ontologies in Medical Data Integration: A Case Study

    Full text link
    Evidence-based medicine is critically dependent on three sources of information: a medical knowledge base, the patients medical record and knowledge of available resources, including where appropriate, clinical protocols. Patient data is often scattered in a variety of databases and may, in a distributed model, be held across several disparate repositories. Consequently addressing the needs of an evidence-based medicine community presents issues of biomedical data integration, clinical interpretation and knowledge management. This paper outlines how the Health-e-Child project has approached the challenge of requirements specification for (bio-) medical data integration, from the level of cellular data, through disease to that of patient and population. The approach is illuminated through the requirements elicitation and analysis of Juvenile Idiopathic Arthritis (JIA), one of three diseases being studied in the EC-funded Health-e-Child project.Comment: 6 pages, 1 figure. Presented at the 11th International Database Engineering & Applications Symposium (Ideas2007). Banff, Canada September 200

    A Semantic Framework for the Analysis of Privacy Policies

    Get PDF
    • ā€¦
    corecore