71 research outputs found

    A Type-2 Fuzzy Logic Based System for Malaria Epidemic Prediction in Ethiopia

    Get PDF
    Malaria is the most prevalent mosquito-borne disease throughout tropical and subtropical regions of the world with severe medical, economic, and social impact. Malaria is a serious public health problem in Ethiopia since 1959, even if, its morbidity and mortality have been reduced starting from 2001. Various studies were conducted to predict the malaria epidemic using mathematical and statistical approaches, nevertheless, they had no learning capabilities. In this paper, we present a Type-2 Fuzzy Logic Based System for Malaria epidemic prediction in Ethiopia which was trained using real data collected throughout Ethiopia from 2013 to 2017. Fuzzy Logic Based Systems provide a transparent model which employs IF-Then rules for the prediction that could be easily analyzed and interpreted by decision-makers. This is quite important to fight the sources of Malaria and take the needed preventive measures where the generated rules from our system were able to explain the situations and intensity of input factors which contributed to Malaria epidemic incidence up to three months ahead. The presented Type-2 Fuzzy Logic System (T2FLS) learns its rules and fuzzy set parameters from data and was able to outperform its counterparts T1FLS in 2% and ANFIS in 0.33% in the accuracy of prediction of Malaria epidemic in Ethiopia. In addition, the proposed system did shed light on the main causes behind such outbreaks in Ethiopia because of its high level of interpretabilit

    Improving KNN by Gases Brownian Motion Optimization Algorithm to Breast Cancer Detection

    Get PDF
    In the last decade, the application of information technology and artificial intelligence algorithms are widely developed in collecting information of cancer patients and detecting them based on proposing various detection algorithms. The K-Nearest-Neighbor classification algorithm (KNN) is one of the most popular of detection algorithms, which has two challenges in determining the value of k and the volume of computations proportional to the size of the data and sample selected for training. In this paper, the Gaussian Brownian Motion Optimization (GBMO) algorithm is utilized for improving the KNN performance to breast cancer detection. To achieve to this aim, each gas molecule contains the information such as a selected subset of features to apply the KNN and k value. The GBMO has lower time-complexity order than other algorithms and has also been observed to perform better than other optimization algorithms in other applications. The algorithm and three well-known meta-heuristic algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Imperialist Competitive Algorithm (ICA) have been implemented on five benchmark functions and compared the obtained results. The GBMO+KNN performed on three benchmark datasets of breast cancer from UCI and the obtained results are compared with other existing cancer detection algorithms. These comparisons show significantly improves this classification accuracy with the proposed detection algorithm

    The Construction of Support Vector Machine Classifier Using the Firefly Algorithm

    Get PDF
    The setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM). This tool is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a multiclass classification, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classifications are explored. In the experiments on binary classification, ten of the benchmark data sets of the University of California, Irvine (UCI), machine learning repository are used; additionally the firefly-SVM is applied to the multiclass diagnosis of ultrasonic supraspinatus images. The classification performance of firefly-SVM is also compared to the original LIBSVM method associated with the grid search method and the particle swarm optimization based SVM (PSO-SVM). The experimental results advocate the use of firefly-SVM to classify pattern classifications for maximum accuracy

    A Big-Bang Big-Crunch Type-2 Fuzzy Logic-based System for Malaria Epidemic Prediction in Ethiopia

    Get PDF
    ABSTRACT- Malaria is a life-threatening disease caused by Plasmodium parasite infection with huge medical, economic, and social impact. Malaria is one of a serious public health problem in Ethiopia since 1959, even if, its morbidity and mortality have been reduced starting from 2001. Various studies were conducted to predict the Malaria epidemic using mathematical and statistical regression approaches, nevertheless, they had no learning capabilities. In this paper, we presented a type-2 fuzzy logic-based system for Malaria epidemic prediction (MEP) in Ethiopia which has been optimized by the Big-Bang Big-Crunch (BBBC) approach to maximizing the model accuracy and interpretability to predict for the future occurrence of Malaria. We compared the proposed BBBC optimized type-2 fuzzy logic-based system against its counterpart T1FLS, non-optimized T2FLS, ANFIS and ANN. The results show that the optimized proposed T2FLS provides a more interpretable model that predicts the future occurrence of Malaria from one up to three months ahead with optimal accuracy. This helps to answer the question of when and where must make preparation to prevent and control the occurrence of Malaria epidemic since the generated rules from our system were able to explain the situations and intensity of input factors which contributed to the Malaria epidemic and outbreak

    Data-driven malaria prevalence prediction in large densely populated urban holoendemic sub-Saharan West Africa

    Get PDF
    Over 200 million malaria cases globally lead to half-million deaths annually. The development of malaria prevalence prediction systems to support malaria care pathways has been hindered by lack of data, a tendency towards universal "monolithic" models (one-size-fits-all-regions) and a focus on long lead time predictions. Current systems do not provide short-term local predictions at an accuracy suitable for deployment in clinical practice. Here we show a data-driven approach that reliably produces one-month-ahead prevalence prediction within a densely populated all-year-round malaria metropolis of over 3.5 million inhabitants situated in Nigeria which has one of the largest global burdens of P. falciparum malaria. We estimate one-month-ahead prevalence in a unique 22-years prospective regional dataset of > 9 × 10^{4} participants attending our healthcare services. Our system agrees with both magnitude and direction of the prediction on validation data achieving MAE ≤ 6 × 10^{-2}, MSE ≤ 7 × 10^{-3}, PCC (median 0.63, IQR 0.3) and with more than 80% of estimates within a (+ 0.1 to - 0.05) error-tolerance range which is clinically relevant for decision-support in our holoendemic setting. Our data-driven approach could facilitate healthcare systems to harness their own data to support local malaria care pathways

    Prediksi Harga Saham menggunakan Support Vector Regression dan Firefly Algorithm

    Get PDF
    Dalam dunia investasi, saham merupakan salah satu instrumen pasar keuangan yang paling populer karena menjanjikan keuntungan yang lebih besar dari instrumen konvensional lain seperti deposito ataupun emas. Keuntungan tersebut didapat dari dividen (keuntungan dari hasil pembagian laba perusahaan) maupun capital gain (keuntungan yang diperoleh dari kelebihan nilai jual terhadap nilai beli saham). Akan tetapi harga suatu saham dapat berubah secara cepat dari waktu ke waktu dan para investor diharapkan untuk segera memutuskan kapan sebaiknya saham dijual atau tetap dipertahankan. Oleh karena itu dibutuhkan sistem yang dapat memprediksi pergerakan harga saham tersebut untuk membantu para investor dalam melakukan analisis dan tindakan yang tepat sehingga resiko dapat diminimalisir dan keuntungan dapat dioptimalkan. Dalam Tugas Akhir ini, akan dibangun sebuah sistem yang melakukan prediksi terhadap harga saham menggunakan analisis teknikal yang diimplementasikan menggunakan Support Vector Regression dan Firefly Algorithm. Support Vector Regression (SVR) merupakan pengembangan dari metode support vector machine untuk kasus regresi. Metode ini mampu mengatasi overfitting serta mampu menunjukkan performa yang bagus. Akan tetapi terdapat kelemahan pada SVR dalam menentukan nilai parameter yang paling optimal untuk digunakan. Untuk mengatasi kelemahan tersebut digunakanlah algoritma optimasi Firefly Algorithm untuk mencari nilai parameter SVR yang paling optimal. Database yang digunakan pada Tugas Akhir ini menggunakan data historis pergerakan harga empat saham blue chip yang mengacu pada finance.yahoo.com periode 2010 - 2014. Hasil penelitian menunjukkan bahwa SVR dan FA dapat diimplementasikan sebagai metode untuk memprediksi harga saham dengan error kurang dari 5%. Kata kunci: Prediksi harga saham, Time Series, Support Vector Regression (SVR), Firefly Algorithm (FA)

    Long-Term Precipitation Analysis and Estimation of Precipitation Concentration Index Using Three Support Vector Machine Methods

    Get PDF
    The monthly precipitation data from 29 stations in Serbia during the period of 1946–2012 were considered. Precipitation trends were calculated using linear regression method. Three CLINO periods (1961–1990, 1971–2000, and 1981–2010) in three subregions were analysed. The CLINO 1981–2010 period had a significant increasing trend. Spatial pattern of the precipitation concentration index (PCI) was presented. For the purpose of PCI prediction, three Support Vector Machine (SVM) models, namely, SVM coupled with the discrete wavelet transform (SVM-Wavelet), the firefly algorithm (SVM-FFA), and using the radial basis function (SVM-RBF), were developed and used. The estimation and prediction results of these models were compared with each other using three statistical indicators, that is, root mean square error, coefficient of determination, and coefficient of efficiency. The experimental results showed that an improvement in predictive accuracy and capability of generalization can be achieved by the SVM-Wavelet approach. Moreover, the results indicated the proposed SVM-Wavelet model can adequately predict the PCI

    Epicasting: An Ensemble Wavelet Neural Network (EWNet) for Forecasting Epidemics

    Full text link
    Infectious diseases remain among the top contributors to human illness and death worldwide, among which many diseases produce epidemic waves of infection. The unavailability of specific drugs and ready-to-use vaccines to prevent most of these epidemics makes the situation worse. These force public health officials and policymakers to rely on early warning systems generated by reliable and accurate forecasts of epidemics. Accurate forecasts of epidemics can assist stakeholders in tailoring countermeasures, such as vaccination campaigns, staff scheduling, and resource allocation, to the situation at hand, which could translate to reductions in the impact of a disease. Unfortunately, most of these past epidemics exhibit nonlinear and non-stationary characteristics due to their spreading fluctuations based on seasonal-dependent variability and the nature of these epidemics. We analyse a wide variety of epidemic time series datasets using a maximal overlap discrete wavelet transform (MODWT) based autoregressive neural network and call it EWNet model. MODWT techniques effectively characterize non-stationary behavior and seasonal dependencies in the epidemic time series and improve the nonlinear forecasting scheme of the autoregressive neural network in the proposed ensemble wavelet network framework. From a nonlinear time series viewpoint, we explore the asymptotic stationarity of the proposed EWNet model to show the asymptotic behavior of the associated Markov Chain. We also theoretically investigate the effect of learning stability and the choice of hidden neurons in the proposal. From a practical perspective, we compare our proposed EWNet framework with several statistical, machine learning, and deep learning models. Experimental results show that the proposed EWNet is highly competitive compared to the state-of-the-art epidemic forecasting methods

    A systematic and prospectively validated approach for identifying synergistic drug combinations against malaria.

    Get PDF
    BACKGROUND: Nearly half of the world's population (3.2 billion people) were at risk of malaria in 2015, and resistance to current therapies is a major concern. While the standard of care includes drug combinations, there is a pressing need to identify new combinations that can bypass current resistance mechanisms. In the work presented here, a combined transcriptional drug repositioning/discovery and machine learning approach is proposed. METHODS: The integrated approach utilizes gene expression data from patient-derived samples, in combination with large-scale anti-malarial combination screening data, to predict synergistic compound combinations for three Plasmodium falciparum strains (3D7, DD2 and HB3). Both single compounds and combinations predicted to be active were prospectively tested in experiment. RESULTS: One of the predicted single agents, apicidin, was active with the AC50 values of 74.9, 84.1 and 74.9 nM in 3D7, DD2 and HB3 P. falciparum strains while its maximal safe plasma concentration in human is 547.6 ± 136.6 nM. Apicidin at the safe dose of 500 nM kills on average 97% of the parasite. The synergy prediction algorithm exhibited overall precision and recall of 83.5 and 65.1% for mild-to-strong, 48.8 and 75.5% for moderate-to-strong and 12.0 and 62.7% for strong synergies. Some of the prospectively predicted combinations, such as tacrolimus-hydroxyzine and raloxifene-thioridazine, exhibited significant synergy across the three P. falciparum strains included in the study. CONCLUSIONS: Systematic approaches can play an important role in accelerating discovering novel combinational therapies for malaria as it enables selecting novel synergistic compound pairs in a more informed and cost-effective manner
    • …
    corecore