141,197 research outputs found

    Scaling Up Large-scale Sparse Learning and Its Application to Medical Imaging

    Get PDF
    abstract: Large-scale â„“1\ell_1-regularized loss minimization problems arise in high-dimensional applications such as compressed sensing and high-dimensional supervised learning, including classification and regression problems. In many applications, it remains challenging to apply the sparse learning model to large-scale problems that have massive data samples with high-dimensional features. One popular and promising strategy is to scaling up the optimization problem in parallel. Parallel solvers run multiple cores on a shared memory system or a distributed environment to speed up the computation, while the practical usage is limited by the huge dimension in the feature space and synchronization problems. In this dissertation, I carry out the research along the direction with particular focuses on scaling up the optimization of sparse learning for supervised and unsupervised learning problems. For the supervised learning, I firstly propose an asynchronous parallel solver to optimize the large-scale sparse learning model in a multithreading environment. Moreover, I propose a distributed framework to conduct the learning process when the dataset is distributed stored among different machines. Then the proposed model is further extended to the studies of risk genetic factors for Alzheimer's Disease (AD) among different research institutions, integrating a group feature selection framework to rank the top risk SNPs for AD. For the unsupervised learning problem, I propose a highly efficient solver, termed Stochastic Coordinate Coding (SCC), scaling up the optimization of dictionary learning and sparse coding problems. The common issue for the medical imaging research is that the longitudinal features of patients among different time points are beneficial to study together. To further improve the dictionary learning model, I propose a multi-task dictionary learning method, learning the different task simultaneously and utilizing shared and individual dictionary to encode both consistent and changing imaging features.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Speeding up Multiple Instance Learning Classification Rules on GPUs

    Get PDF
    Multiple instance learning is a challenging task in supervised learning and data mining. How- ever, algorithm performance becomes slow when learning from large-scale and high-dimensional data sets. Graphics processing units (GPUs) are being used for reducing computing time of algorithms. This paper presents an implementation of the G3P-MI algorithm on GPUs for solving multiple instance problems using classification rules. The GPU model proposed is distributable to multiple GPUs, seeking for its scal- ability across large-scale and high-dimensional data sets. The proposal is compared to the multi-threaded CPU algorithm with SSE parallelism over a series of data sets. Experimental results report that the com- putation time can be significantly reduced and its scalability improved. Specifically, an speedup of up to 149Ă— can be achieved over the multi-threaded CPU algorithm when using four GPUs, and the rules interpreter achieves great efficiency and runs over 108 billion Genetic Programming operations per second

    Doctor of Philosophy in Computing

    Get PDF
    dissertationImage segmentation is the problem of partitioning an image into disjoint segments that are perceptually or semantically homogeneous. As one of the most fundamental computer vision problems, image segmentation is used as a primary step for high-level vision tasks, such as object recognition and image understanding, and has even wider applications in interdisciplinary areas, such as longitudinal brain image analysis. Hierarchical models have gained popularity as a key component in image segmentation frameworks. By imposing structures, a hierarchical model can efficiently utilize features from larger image regions and make optimal inference for final segmentation feasible. We develop a hierarchical merge tree (HMT) model for image segmentation. Motivated by the application in large-scale segmentation of neuronal structures in electron microscopy (EM) images, our model provides a compact representation of region merging hypotheses and utilizes higher order information for efficient segmentation inference. Taking advantage of supervised learning, our model is free from parameter tuning and outperforms previous state-of-the-art methods on both two-dimensional (2D) and three-dimensional EM image data sets without any change. We also extend HMT to the hierarchical merge forest (HMF) model. By identifying region correspondences, HMF utilizes inter-section information to correct intra-section errors and improves 2D EM segmentation accuracy. HMT is a generic segmentation model. We demonstrate this by applying it to natural image segmentation problems. We propose a constrained conditional model formulation with a globally optimal inference algorithm for HMT and an iterative merge tree sampling algorithm that significantly improves its performance. Experimental results show our approach achieves state-of-the-art accuracy for object-independent image segmentation. Finally, we propose a semi-supervised HMT (SSHMT) model to reduce the high demand for labeled data by supervised learning. We introduce a differentiable unsupervised loss term that enforces consistent boundary predictions and develop a Bayesian learning model that combines supervised and unsupervised information. We show that with a very small amount of labeled data, SSHMT consistently performs close to the supervised HMT with full labeled data sets and significantly outperforms HMT trained with the same labeled subsets

    Efficient Modeling of Surrogates to Improve Multi-source High-dimensional Biobank Studies

    Full text link
    Surrogate variables in electronic health records (EHR) and biobank data play an important role in biomedical studies due to the scarcity or absence of chart-reviewed gold standard labels. We develop a novel approach named SASH for {\bf S}urrogate-{\bf A}ssisted and data-{\bf S}hielding {\bf H}igh-dimensional integrative regression. It is a semi-supervised approach that efficiently leverages sizable unlabeled samples with error-prone EHR surrogate outcomes from multiple local sites, to improve the learning accuracy of the small gold-labeled data. {To facilitate stable and efficient knowledge extraction from the surrogates, our method first obtains a preliminary supervised estimator, and then uses it to assist training a regularized single index model (SIM) for the surrogates. Interestingly, through a chain of convex and properly penalized sparse regressions that approximate the SIM loss with bias-correction, our method avoids the local minima issue of the SIM training, and fully eliminates the impact of the preliminary estimator's large error. In addition, it protects individual-level information through summary-statistics-based data aggregation across the local sites, leveraging a similar idea of bias-corrected approximation for SIM.} Through simulation studies, we demonstrate that our method outperforms existing approaches on finite samples. Finally, we apply our method to develop a high dimensional genetic risk model for type II diabetes using large-scale data sets from UK and Mass General Brigham biobanks, where only a small fraction of subjects in one site has been labeled via chart reviewing

    Manifold Learning Approaches to Compressing Latent Spaces of Unsupervised Feature Hierarchies

    Get PDF
    Field robots encounter dynamic unstructured environments containing a vast array of unique objects. In order to make sense of the world in which they are placed, they collect large quantities of unlabelled data with a variety of sensors. Producing robust and reliable applications depends entirely on the ability of the robot to understand the unlabelled data it obtains. Deep Learning techniques have had a high level of success in learning powerful unsupervised representations for a variety of discriminative and generative models. Applying these techniques to problems encountered in field robotics remains a challenging endeavour. Modern Deep Learning methods are typically trained with a substantial labelled dataset, while datasets produced in a field robotics context contain limited labelled training data. The primary motivation for this thesis stems from the problem of applying large scale Deep Learning models to field robotics datasets that are label poor. While the lack of labelled ground truth data drives the desire for unsupervised methods, the need for improving the model scaling is driven by two factors, performance and computational requirements. When utilising unsupervised layer outputs as representations for classification, the classification performance increases with layer size. Scaling up models with multiple large layers of features is problematic, as the sizes of subsequent hidden layers scales with the size of the previous layer. This quadratic scaling, and the associated time required to train such networks has prevented adoption of large Deep Learning models beyond cluster computing. The contributions in this thesis are developed from the observation that parameters or filter el- ements learnt in Deep Learning systems are typically highly structured, and contain related ele- ments. Firstly, the structure of unsupervised filters is utilised to construct a mapping from the high dimensional filter space to a low dimensional manifold. This creates a significantly smaller repre- sentation for subsequent feature learning. This mapping, and its effect on the resulting encodings, highlights the need for the ability to learn highly overcomplete sets of convolutional features. Driven by this need, the unsupervised pretraining of Deep Convolutional Networks is developed to include a number of modern training and regularisation methods. These pretrained models are then used to provide initialisations for supervised convolutional models trained on low quantities of labelled data. By utilising pretraining, a significant increase in classification performance on a number of publicly available datasets is achieved. In order to apply these techniques to outdoor 3D Laser Illuminated Detection And Ranging data, we develop a set of resampling techniques to provide uniform input to Deep Learning models. The features learnt in these systems outperform the high effort hand engineered features developed specifically for 3D data. The representation of a given signal is then reinterpreted as a combination of modes that exist on the learnt low dimensional filter manifold. From this, we develop an encoding technique that allows the high dimensional layer output to be represented as a combination of low dimensional components. This allows the growth of subsequent layers to only be dependent on the intrinsic dimensionality of the filter manifold and not the number of elements contained in the previous layer. Finally, the resulting unsupervised convolutional model, the encoding frameworks and the em- bedding methodology are used to produce a new unsupervised learning stratergy that is able to encode images in terms of overcomplete filter spaces, without producing an explosion in the size of the intermediate parameter spaces. This model produces classification results on par with state of the art models, yet requires significantly less computational resources and is suitable for use in the constrained computation environment of a field robot
    • …
    corecore