1,878 research outputs found

    A supervised intrusion detection system for smart home IoT devices

    Get PDF
    The proliferation in Internet of Things (IoT) devices, which routinely collect sensitive information, is demonstrated by their prominence in our daily lives. Although such devices simplify and automate every day tasks, they also introduce tremendous security flaws. Current insufficient security measures employed to defend smart devices make IoT the `weakest' link to breaking into a secure infrastructure, and therefore an attractive target to attackers. This paper proposes a three layer Intrusion Detection System (IDS) that uses a supervised approach to detect a range of popular network based cyber-attacks on IoT networks. The system consists of three main functions: 1) classify the type and profile the normal behaviour of each IoT device connected to the network, 2) identifies malicious packets on the network when an attack is occurring, and 3) classifies the type of the attack that has been deployed. The system is evaluated within a smart home testbed consisting of 8 popular commercially available devices. The effectiveness of the proposed IDS architecture is evaluated by deploying 12 attacks from 4 main network based attack categories such as: Denial of Service (DoS), Man-In-The-Middle (MITM)/Spoofing, Reconnaissance, and Replay. Additionally, the system is also evaluated against 4 scenarios of multi-stage attacks with complex chains of events. The performance of the system's three core functions result in an F-measure of: 1) 96.2%, 2) 90.0%, and 3) 98.0%. This demonstrates that the proposed architecture can automatically distinguish between IoT devices on the network, whether network activity is malicious or benign, and detect which attack was deployed on which device connected to the network successfully

    Personalized Ambience: An Integration of Learning Model and Intelligent Lighting Control

    Get PDF
    The number of households and offices adopting automation system is on the rise. Although devices and actuators can be controlled through wireless transmission, they are mostly static with preset schedules, or at different times it requires human intervention. This paper presents a smart ambience system that analyzes the user’s lighting habits, taking into account different environmental context variables and user needs in order to automatically learn about the user’s preferences and automate the room ambience dynamically. Context information is obtained from Yahoo Weather and environmental data pertaining to the room is collected via Cubesensors to study the user’s lighting habits. We employs a learning model known as the Reduced Error Prune Tree (REPTree) to analyze the users’ preferences, and subsequently predicts the preferred lighting condition to be actuated in real time through Philips Hue. The system is able to ensure the user’s comfort at all time by performing a closed feedback control loop which checks and maintains a suitable lighting ambience at optimal level

    IoT Network Attack Detection using Supervised Machine Learning

    Get PDF
    Article originally published in International Journal of Artificial Intelligence and Expert SystemsThe use of supervised learning algorithms to detect malicious traffic can be valuable in designing intrusion detection systems and ascertaining security risks. The Internet of things (IoT) refers to the billions of physical, electronic devices around the world that are often connected over the Internet. The growth of IoT systems comes at the risk of network attacks such as denial of service (DoS) and spoofing. In this research, we perform various supervised feature selection methods and employ three classifiers on IoT network data. The classifiers predict with high accuracy if the network traffic against the IoT device was malicious or benign. We compare the feature selection methods to arrive at the best that can be used for network intrusion predictio

    SUTMS - Unified Threat Management Framework for Home Networks

    Get PDF
    Home networks were initially designed for web browsing and non-business critical applications. As infrastructure improved, internet broadband costs decreased, and home internet usage transferred to e-commerce and business-critical applications. Today’s home computers host personnel identifiable information and financial data and act as a bridge to corporate networks via remote access technologies like VPN. The expansion of remote work and the transition to cloud computing have broadened the attack surface for potential threats. Home networks have become the extension of critical networks and services, hackers can get access to corporate data by compromising devices attacked to broad- band routers. All these challenges depict the importance of home-based Unified Threat Management (UTM) systems. There is a need of unified threat management framework that is developed specifically for home and small networks to address emerging security challenges. In this research, the proposed Smart Unified Threat Management (SUTMS) framework serves as a comprehensive solution for implementing home network security, incorporating firewall, anti-bot, intrusion detection, and anomaly detection engines into a unified system. SUTMS is able to provide 99.99% accuracy with 56.83% memory improvements. IPS stands out as the most resource-intensive UTM service, SUTMS successfully reduces the performance overhead of IDS by integrating it with the flow detection mod- ule. The artifact employs flow analysis to identify network anomalies and categorizes encrypted traffic according to its abnormalities. SUTMS can be scaled by introducing optional functions, i.e., routing and smart logging (utilizing Apriori algorithms). The research also tackles one of the limitations identified by SUTMS through the introduction of a second artifact called Secure Centralized Management System (SCMS). SCMS is a lightweight asset management platform with built-in security intelligence that can seamlessly integrate with a cloud for real-time updates
    • …
    corecore