1,476 research outputs found

    Gene-Based Multiclass Cancer Diagnosis with Class-Selective Rejections

    Get PDF
    Supervised learning of microarray data is receiving much attention in recent years. Multiclass cancer diagnosis, based on selected gene profiles, are used as adjunct of clinical diagnosis. However, supervised diagnosis may hinder patient care, add expense or confound a result. To avoid this misleading, a multiclass cancer diagnosis with class-selective rejection is proposed. It rejects some patients from one, some, or all classes in order to ensure a higher reliability while reducing time and expense costs. Moreover, this classifier takes into account asymmetric penalties dependant on each class and on each wrong or partially correct decision. It is based on ν-1-SVM coupled with its regularization path and minimizes a general loss function defined in the class-selective rejection scheme. The state of art multiclass algorithms can be considered as a particular case of the proposed algorithm where the number of decisions is given by the classes and the loss function is defined by the Bayesian risk. Two experiments are carried out in the Bayesian and the class selective rejection frameworks. Five genes selected datasets are used to assess the performance of the proposed method. Results are discussed and accuracies are compared with those computed by the Naive Bayes, Nearest Neighbor, Linear Perceptron, Multilayer Perceptron, and Support Vector Machines classifiers

    Comment on "Support Vector Machines with Applications"

    Full text link
    Comment on ``Support Vector Machines with Applications'' [math.ST/0612817]Comment: Published at http://dx.doi.org/10.1214/088342306000000484 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On the Consistency of Ordinal Regression Methods

    Get PDF
    Many of the ordinal regression models that have been proposed in the literature can be seen as methods that minimize a convex surrogate of the zero-one, absolute, or squared loss functions. A key property that allows to study the statistical implications of such approximations is that of Fisher consistency. Fisher consistency is a desirable property for surrogate loss functions and implies that in the population setting, i.e., if the probability distribution that generates the data were available, then optimization of the surrogate would yield the best possible model. In this paper we will characterize the Fisher consistency of a rich family of surrogate loss functions used in the context of ordinal regression, including support vector ordinal regression, ORBoosting and least absolute deviation. We will see that, for a family of surrogate loss functions that subsumes support vector ordinal regression and ORBoosting, consistency can be fully characterized by the derivative of a real-valued function at zero, as happens for convex margin-based surrogates in binary classification. We also derive excess risk bounds for a surrogate of the absolute error that generalize existing risk bounds for binary classification. Finally, our analysis suggests a novel surrogate of the squared error loss. We compare this novel surrogate with competing approaches on 9 different datasets. Our method shows to be highly competitive in practice, outperforming the least squares loss on 7 out of 9 datasets.Comment: Journal of Machine Learning Research 18 (2017
    corecore