117 research outputs found

    Automated Remote Sensing Image Interpretation with Limited Labeled Training Data

    Get PDF
    Automated remote sensing image interpretation has been investigated for more than a decade. In early years, most work was based on the assumption that there are sufficient labeled samples to be used for training. However, ground-truth collection is a very tedious and time-consuming task and sometimes very expensive, especially in the field of remote sensing that usually relies on field surveys to collect ground truth. In recent years, as the development of advanced machine learning techniques, remote sensing image interpretation with limited ground-truth has caught the attention of researchers in the fields of both remote sensing and computer science. Three approaches that focus on different aspects of the interpretation process, i.e., feature extraction, classification, and segmentation, are proposed to deal with the limited ground truth problem. First, feature extraction techniques, which usually serve as a pre-processing step for remote sensing image classification are explored. Instead of only focusing on feature extraction, a joint feature extraction and classification framework is proposed based on ensemble local manifold learning. Second, classifiers in the case of limited labeled training data are investigated, and an enhanced ensemble learning method that outperforms state-of-the-art classification methods is proposed. Third, image segmentation techniques are investigated, with the aid of unlabeled samples and spatial information. A semi-supervised self-training method is proposed, which is capable of expanding the number of training samples by its own and hence improving classification performance iteratively. Experiments show that the proposed approaches outperform state-of-the-art techniques in terms of classification accuracy on benchmark remote sensing datasets.4 month

    Segmentation and Classification of Remotely Sensed Images: Object-Based Image Analysis

    Get PDF
    Land-use-and-land-cover (LULC) mapping is crucial in precision agriculture, environmental monitoring, disaster response, and military applications. The demand for improved and more accurate LULC maps has led to the emergence of a key methodology known as Geographic Object-Based Image Analysis (GEOBIA). The core idea of the GEOBIA for an object-based classification system (OBC) is to change the unit of analysis from single-pixels to groups-of-pixels called `objects\u27 through segmentation. While this new paradigm solved problems and improved global accuracy, it also raised new challenges such as the loss of accuracy in categories that are less abundant, but potentially important. Although this trade-off may be acceptable in some domains, the consequences of such an accuracy loss could be potentially fatal in others (for instance, landmine detection). This thesis proposes a method to improve OBC performance by eliminating such accuracy losses. Specifically, we examine the two key players of an OBC system : Hierarchical Segmentation and Supervised Classification. Further, we propose a model to understand the source of accuracy errors in minority categories and provide a method called Scale Fusion to eliminate those errors. This proposed fusion method involves two stages. First, the characteristic scale for each category is estimated through a combination of segmentation and supervised classification. Next, these estimated scales (segmentation maps) are fused into one combined-object-map. Classification performance is evaluated by comparing results of the multi-cut-and-fuse approach (proposed) to the traditional single-cut (SC) scale selection strategy. Testing on four different data sets revealed that our proposed algorithm improves accuracy on minority classes while performing just as well on abundant categories. Another active obstacle, presented by today\u27s remotely sensed images, is the volume of information produced by our modern sensors with high spatial and temporal resolution. For instance, over this decade, it is projected that 353 earth observation satellites from 41 countries are to be launched. Timely production of geo-spatial information, from these large volumes, is a challenge. This is because in the traditional methods, the underlying representation and information processing is still primarily pixel-based, which implies that as the number of pixels increases, so does the computational complexity. To overcome this bottleneck, created by pixel-based representation, this thesis proposes a dart-based discrete topological representation (DBTR), where the DBTR differs from pixel-based methods in its use of a reduced boundary based representation. Intuitively, the efficiency gains arise from the observation that, it is lighter to represent a region by its boundary (darts) than by its area (pixels). We found that our implementation of DBTR, not only improved our computational efficiency, but also enhanced our ability to encode and extract spatial information. Overall, this thesis presents solutions to two problems of an object-based classification system: accuracy and efficiency. Our proposed Scale Fusion method demonstrated improvements in accuracy, while our dart-based topology representation (DBTR) showed improved efficiency in the extraction and encoding of spatial information

    Information Extraction and Modeling from Remote Sensing Images: Application to the Enhancement of Digital Elevation Models

    Get PDF
    To deal with high complexity data such as remote sensing images presenting metric resolution over large areas, an innovative, fast and robust image processing system is presented. The modeling of increasing level of information is used to extract, represent and link image features to semantic content. The potential of the proposed techniques is demonstrated with an application to enhance and regularize digital elevation models based on information collected from RS images

    Self-organising maps : statistical analysis, treatment and applications.

    Get PDF
    This thesis presents some substantial theoretical analyses and optimal treatments of Kohonen's self-organising map (SOM) algorithm, and explores the practical application potential of the algorithm for vector quantisation, pattern classification, and image processing. It consists of two major parts. In the first part, the SOM algorithm is investigated and analysed from a statistical viewpoint. The proof of its universal convergence for any dimensionality is obtained using a novel and extended form of the Central Limit Theorem. Its feature space is shown to be an approximate multivariate Gaussian process, which will eventually converge and form a mapping, which minimises the mean-square distortion between the feature and input spaces. The diminishing effect of the initial states and implicit effects of the learning rate and neighbourhood function on its convergence and ordering are analysed and discussed. Distinct and meaningful definitions, and associated measures, of its ordering are presented in relation to map's fault-tolerance. The SOM algorithm is further enhanced by incorporating a proposed constraint, or Bayesian modification, in order to achieve optimal vector quantisation or pattern classification. The second part of this thesis addresses the task of unsupervised texture-image segmentation by means of SOM networks and model-based descriptions. A brief review of texture analysis in terms of definitions, perceptions, and approaches is given. Markov random field model-based approaches are discussed in detail. Arising from this a hierarchical self-organised segmentation structure, which consists of a local MRF parameter estimator, a SOM network, and a simple voting layer, is proposed and is shown, by theoretical analysis and practical experiment, to achieve a maximum likelihood or maximum a posteriori segmentation. A fast, simple, but efficient boundary relaxation algorithm is proposed as a post-processor to further refine the resulting segmentation. The class number validation problem in a fully unsupervised segmentation is approached by a classical, simple, and on-line minimum mean-square-error method. Experimental results indicate that this method is very efficient for texture segmentation problems. The thesis concludes with some suggestions for further work on SOM neural networks

    Advanced techniques for classification of polarimetric synthetic aperture radar data

    Get PDF
    With various remote sensing technologies to aid Earth Observation, radar-based imaging is one of them gaining major interests due to advances in its imaging techniques in form of syn-thetic aperture radar (SAR) and polarimetry. The majority of radar applications focus on mon-itoring, detecting, and classifying local or global areas of interests to support humans within their efforts of decision-making, analysis, and interpretation of Earth’s environment. This thesis focuses on improving the classification performance and process particularly concerning the application of land use and land cover over polarimetric SAR (PolSAR) data. To achieve this, three contributions are studied related to superior feature description and ad-vanced machine-learning techniques including classifiers, principles, and data exploitation. First, this thesis investigates the application of color features within PolSAR image classi-fication to provide additional discrimination on top of the conventional scattering information and texture features. The color features are extracted over the visual presentation of fully and partially polarimetric SAR data by generation of pseudo color images. Within the experiments, the obtained results demonstrated that with the addition of the considered color features, the achieved classification performances outperformed results with common PolSAR features alone as well as achieved higher classification accuracies compared to the traditional combination of PolSAR and texture features. Second, to address the large-scale learning challenge in PolSAR image classification with the utmost efficiency, this thesis introduces the application of an adaptive and data-driven supervised classification topology called Collective Network of Binary Classifiers, CNBC. This topology incorporates active learning to support human users with the analysis and interpretation of PolSAR data focusing on collections of images, where changes or updates to the existing classifier might be required frequently due to surface, terrain, and object changes as well as certain variations in capturing time and position. Evaluations demonstrated the capabilities of CNBC over an extensive set of experimental results regarding the adaptation and data-driven classification of single as well as collections of PolSAR images. The experimental results verified that the evolutionary classification topology, CNBC, did provide an efficient solution for the problems of scalability and dynamic adaptability allowing both feature space dimensions and the number of terrain classes in PolSAR image collections to vary dynamically. Third, most PolSAR classification problems are undertaken by supervised machine learn-ing, which require manually labeled ground truth data available. To reduce the manual labeling efforts, supervised and unsupervised learning approaches are combined into semi-supervised learning to utilize the huge amount of unlabeled data. The application of semi-supervised learning in this thesis is motivated by ill-posed classification tasks related to the small training size problem. Therefore, this thesis investigates how much ground truth is actually necessary for certain classification problems to achieve satisfactory results in a supervised and semi-supervised learning scenario. To address this, two semi-supervised approaches are proposed by unsupervised extension of the training data and ensemble-based self-training. The evaluations showed that significant speed-ups and improvements in classification performance are achieved. In particular, for a remote sensing application such as PolSAR image classification, it is advantageous to exploit the location-based information from the labeled training data. Each of the developed techniques provides its stand-alone contribution from different viewpoints to improve land use and land cover classification. The introduction of a new fea-ture for better discrimination is independent of the underlying classification algorithms used. The application of the CNBC topology is applicable to various classification problems no matter how the underlying data have been acquired, for example in case of remote sensing data. Moreover, the semi-supervised learning approach tackles the challenge of utilizing the unlabeled data. By combining these techniques for superior feature description and advanced machine-learning techniques exploiting classifier topologies and data, further contributions to polarimetric SAR image classification are made. According to the performance evaluations conducted including visual and numerical assessments, the proposed and investigated tech-niques showed valuable improvements and are able to aid the analysis and interpretation of PolSAR image data. Due to the generic nature of the developed techniques, their applications to other remote sensing data will require only minor adjustments

    Sustainable Agriculture and Advances of Remote Sensing (Volume 1)

    Get PDF
    Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publishing the results, among others

    Uncertainty, interpretability and dataset limitations in Deep Learning

    Full text link
    [eng] Deep Learning (DL) has gained traction in the last years thanks to the exponential increase in compute power. New techniques and methods are published at a daily basis, and records are being set across multiple disciplines. Undeniably, DL has brought a revolution to the machine learning field and to our lives. However, not everything has been resolved and some considerations must be taken into account. For instance, obtaining uncertainty measures and bounds is still an open problem. Models should be able to capture and express the confidence they have in their decisions, and Artificial Neural Networks (ANN) are known to lack in this regard. Be it through out of distribution samples, adversarial attacks, or simply unrelated or nonsensical inputs, ANN models demonstrate an unfounded and incorrect tendency to still output high probabilities. Likewise, interpretability remains an unresolved question. Some fields not only need but rely on being able to provide human interpretations of the thought process of models. ANNs, and specially deep models trained with DL, are hard to reason about. Last but not least, there is a tendency that indicates that models are getting deeper and more complex. At the same time, to cope with the increasing number of parameters, datasets are required to be of higher quality and, usually, larger. Not all research, and even less real world applications, can keep with the increasing demands. Therefore, taking into account the previous issues, the main aim of this thesis is to provide methods and frameworks to tackle each of them. These approaches should be applicable to any suitable field and dataset, and are employed with real world datasets as proof of concept. First, we propose a method that provides interpretability with respect to the results through uncertainty measures. The model in question is capable of reasoning about the uncertainty inherent in data and leverages that information to progressively refine its outputs. In particular, the method is applied to land cover segmentation, a classification task that aims to assign a type of land to each pixel in satellite images. The dataset and application serve to prove that the final uncertainty bound enables the end-user to reason about the possible errors in the segmentation result. Second, Recurrent Neural Networks are used as a method to create robust models towards lacking datasets, both in terms of size and class balance. We apply them to two different fields, road extraction in satellite images and Wireless Capsule Endoscopy (WCE). The former demonstrates that contextual information in the temporal axis of data can be used to create models that achieve comparable results to state-of-the-art while being less complex. The latter, in turn, proves that contextual information for polyp detection can be crucial to obtain models that generalize better and obtain higher performance. Last, we propose two methods to leverage unlabeled data in the model creation process. Often datasets are easier to obtain than to label, which results in many wasted opportunities with traditional classification approaches. Our approaches based on self-supervised learning result in a novel contrastive loss that is capable of extracting meaningful information out of pseudo-labeled data. Applying both methods to WCE data proves that the extracted inherent knowledge creates models that perform better in extremely unbalanced datasets and with lack of data. To summarize, this thesis demonstrates potential solutions to obtain uncertainty bounds, provide reasonable explanations of the outputs, and to combat lack of data or unbalanced datasets. Overall, the presented methods have a positive impact on the DL field and could have a real and tangible effect for the society.[cat] És innegable que el Deep Learning ha causat una revolució en molts aspectes no solament de l’aprenentatge automàtic però també de les nostres vides diàries. Tot i així, encara queden aspectes a millorar. Les xarxes neuronals tenen problemes per estimar la seva confiança en les prediccions, i sovint reporten probabilitats altes en casos que no tenen relació amb el model o que directament no tenen sentit. De la mateixa forma, interpretar els resultats d’un model profund i complex resulta una tasca extremadament complicada. Aquests mateixos models, cada cop amb més paràmetres i més potents, requereixen també de dades més ben etiquetades i més completes. Tenint en compte aquestes limitacions, l’objectiu principal és el de buscar mètodes i algoritmes per trobar-ne solució. Primerament, es proposa la creació d’un mètode capaç d’obtenir incertesa en imatges satèl·lit i d’utilitzar-la per crear models més robustos i resultats interpretables. En segon lloc, s’utilitzen Recurrent Neural Networks (RNN) per combatre la falta de dades mitjançant l’obtenció d’informació contextual de dades temporals. Aquestes s’apliquen per l’extracció de carreteres d’imatges satèl·lit i per la classificació de pòlips en imatges obtingudes amb Wireless Capsule Endoscopy (WCE). Finalment, es plantegen dos mètodes per tractar amb la falta de dades etiquetades i desbalancejos en les classes amb l’ús de Self-supervised Learning (SSL). Seqüències no etiquetades d’imatges d’intestins s’incorporen en el models en una fase prèvia a la classificació tradicional. Aquesta tesi demostra que les solucions proposades per obtenir mesures d’incertesa són efectives per donar explicacions raonables i interpretables sobre els resultats. Igualment, es prova que el context en dades de caràcter temporal, obtingut amb RNNs, serveix per obtenir models més simples que poden arribar a solucionar els problemes derivats de la falta de dades. Per últim, es mostra que SSL serveix per combatre de forma efectiva els problemes de generalització degut a dades no balancejades en diversos dominis de WCE. Concloem que aquesta tesi presenta mètodes amb un impacte real en diversos aspectes de DL a la vegada que demostra la capacitat de tenir un impacte positiu en la societat

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal
    corecore