25 research outputs found

    Direction-of-arrival estimation with conventional co-prime arrays using deep learning-based probablistic Bayesian neural networks

    Full text link
    The paper investigates the direction-of-arrival (DOA) estimation of narrow band signals with conventional co-prime arrays by using probabilistic Bayesian neural networks (PBNN). A super resolution DOA estimation method based on Bayesian neural networks and a spatially overcomplete array output formulation overcomes the pre-assumption dependencies of the model-driven DOA estimation methods. The proposed DOA estimation method utilizes a PBNN model to capture both data and model uncertainty. The developed PBNN model is trained to do the mapping from the pseudo-spectrum to the super resolution spectrum. This learning-based method enhances the generalization of untrained scenarios, and it provides robustness to non-ideal conditions, e.g., small angle separation, data scarcity, and imperfect arrays, etc. Simulation results demonstrate the loss curves of the PBNN model and deterministic model. Simulations are carried out to validate the performance of PBNN model compared to a deterministic model of conventional neural networks (CNN).Comment: 7-page

    Low complexity DOA estimation for wideband off-grid sources based on re-focused compressive sensing with dynamic dictionary

    Get PDF
    Under the compressive sensing (CS) framework, a novel focusing based direction of arrival (DOA) estimation method is first proposed for wideband off-grid sources, and by avoiding the application of group sparsity (GS) across frequencies of interest, significant complexity reduction is achieved with its computational complexity close to that of solving a single frequency based direction finding problem. To further improve the performance by alleviating both the off-grid approximation errors and the focusing errors which are even worse for the off-grid case, a dynamic dictionary based re-focused off-grid DOA estimation method is developed with the number of extremely sparse grids involved in estimation refined to the number of detected sources, and thus the complexity is still very low due to the limited increased complexity introduced by iterations, while improved performance can be achieved compared with those fixed dictionary based off-grid methods

    Underdetermined DOA Estimation Under the Compressive Sensing Framework: A Review

    Get PDF
    Direction of arrival (DOA) estimation from the perspective of sparse signal representation has attracted tremendous attention in past years, where the underlying spatial sparsity reconstruction problem is linked to the compressive sensing (CS) framework. Although this is an area with ongoing intensive research and new methods and results are reported regularly, it is time to have a review about the basic approaches and methods for CS-based DOA estimation, in particular for the underdetermined case. We start from the basic time-domain CSbased formulation for narrowband arrays and then move to the case for recently developed methods for sparse arrays based on the co-array concept. After introducing two specifically designed structures (the two-level nested array and the co-prime array) for optimizing the virtual sensors corresponding to the difference coarray, this CS-based DOA estimation approach is extended to the wideband case by employing the group sparsity concept, where a much larger physical aperture can be achieved by allowing a larger unit inter-element spacing and therefore leading to further improved performance. Finally, a specifically designed ULA structure with associated CS-based underdetermined DOA estimation is presented to exploit the difference co-array concept in the spatio-spectral domain, leading to a significant increase in DOFs. Representative simulation results for typical narrowband and wideband scenarios are provided to demonstrate their performance

    Theory and Algorithms for Reliable Multimodal Data Analysis, Machine Learning, and Signal Processing

    Get PDF
    Modern engineering systems collect large volumes of data measurements across diverse sensing modalities. These measurements can naturally be arranged in higher-order arrays of scalars which are commonly referred to as tensors. Tucker decomposition (TD) is a standard method for tensor analysis with applications in diverse fields of science and engineering. Despite its success, TD exhibits severe sensitivity against outliers —i.e., heavily corrupted entries that appear sporadically in modern datasets. We study L1-norm TD (L1-TD), a reformulation of TD that promotes robustness. For 3-way tensors, we show, for the first time, that L1-TD admits an exact solution via combinatorial optimization and present algorithms for its solution. We propose two novel algorithmic frameworks for approximating the exact solution to L1-TD, for general N-way tensors. We propose a novel algorithm for dynamic L1-TD —i.e., efficient and joint analysis of streaming tensors. Principal-Component Analysis (PCA) (a special case of TD) is also outlier responsive. We consider Lp-quasinorm PCA (Lp-PCA) for

    Sparse Array Signal Processing

    Get PDF
    This dissertation details three approaches for direction-of-arrival (DOA) estimation or beamforming in array signal processing from the perspective of sparsity. In the first part of this dissertation, we consider sparse array beamformer design based on the alternating direction method of multipliers (ADMM); in the second part of this dissertation, the problem of joint DOA estimation and distorted sensor detection is investigated; and off-grid DOA estimation is studied in the last part of this dissertation. In the first part of this thesis, we devise a sparse array design algorithm for adaptive beamforming. Our strategy is based on finding a sparse beamformer weight to maximize the output signal-to-interference-plus-noise ratio (SINR). The proposed method utilizes ADMM, and admits closed-form solutions at each ADMM iteration. The algorithm convergence properties are analyzed by showing the monotonicity and boundedness of the augmented Lagrangian function. In addition, we prove that the proposed algorithm converges to the set of Karush-Kuhn-Tucker stationary points. Numerical results exhibit its excellent performance, which is comparable to that of the exhaustive search approach, slightly better than those of the state-of-the-art solvers, and significantly outperforms several other sparse array design strategies, in terms of output SINR. Moreover, the proposed ADMM algorithm outperforms its competitors, in terms of computational cost. Distorted sensors could occur randomly and may lead to the breakdown of a sensor array system. In the second part of this thesis, we consider an array model in which a small number of sensors are distorted by unknown sensor gain and phase errors. With such an array model, the problem of joint DOA estimation and distorted sensor detection is formulated under the framework of low-rank and row-sparse decomposition. We derive an iteratively reweighted least squares (IRLS) algorithm to solve the resulting problem. The convergence property of the IRLS algorithm is analyzed by means of the monotonicity and boundedness of the objective function. Extensive simulations are conducted in view of parameter selection, convergence speed, computational complexity, and performance of DOA estimation as well as distorted sensor detection. Even though the IRLS algorithm is slightly worse than the ADMM in detecting the distorted sensors, the results show that our approach outperforms several state-of-the-art techniques in terms of convergence speed, computational cost, and DOA estimation performance. In the last part of this thesis, the problem of off-grid DOA estimation is investigated. We develop a method to jointly estimate the closest spatial frequency (the sine of DOA) grids, and the gaps between the estimated grids and the corresponding frequencies. By using a second-order Taylor approximation, the data model under the framework of joint-sparse representation is formulated. We point out an important property of the signals of interest in the model, namely the proportionality relationship. The proportionality relationship is empirically demonstrated to be useful in the sense that it increases the probability of the mixing matrix satisfying the block restricted isometry property. Simulation examples demonstrate the effectiveness and superiority of the proposed method against several state-of-the-art grid-based approaches

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Efficient algorithms and data structures for compressive sensing

    Get PDF
    Wegen der kontinuierlich anwachsenden Anzahl von Sensoren, und den stetig wachsenden Datenmengen, die jene produzieren, stößt die konventielle Art Signale zu verarbeiten, beruhend auf dem Nyquist-Kriterium, auf immer mehr Hindernisse und Probleme. Die kürzlich entwickelte Theorie des Compressive Sensing (CS) formuliert das Versprechen einige dieser Hindernisse zu beseitigen, indem hier allgemeinere Signalaufnahme und -rekonstruktionsverfahren zum Einsatz kommen können. Dies erlaubt, dass hierbei einzelne Abtastwerte komplexer strukturierte Informationen über das Signal enthalten können als dies bei konventiellem Nyquistsampling der Fall ist. Gleichzeitig verändert sich die Signalrekonstruktion notwendigerweise zu einem nicht-linearen Vorgang und ebenso müssen viele Hardwarekonzepte für praktische Anwendungen neu überdacht werden. Das heißt, dass man zwischen der Menge an Information, die man über Signale gewinnen kann, und dem Aufwand für das Design und Betreiben eines Signalverarbeitungssystems abwägen kann und muss. Die hier vorgestellte Arbeit trägt dazu bei, dass bei diesem Abwägen CS mehr begünstigt werden kann, indem neue Resultate vorgestellt werden, die es erlauben, dass CS einfacher in der Praxis Anwendung finden kann, wobei die zu erwartende Leistungsfähigkeit des Systems theoretisch fundiert ist. Beispielsweise spielt das Konzept der Sparsity eine zentrale Rolle, weshalb diese Arbeit eine Methode präsentiert, womit der Grad der Sparsity eines Vektors mittels einer einzelnen Beobachtung geschätzt werden kann. Wir zeigen auf, dass dieser Ansatz für Sparsity Order Estimation zu einem niedrigeren Rekonstruktionsfehler führt, wenn man diesen mit einer Rekonstruktion vergleicht, welcher die Sparsity des Vektors unbekannt ist. Um die Modellierung von Signalen und deren Rekonstruktion effizienter zu gestalten, stellen wir das Konzept von der matrixfreien Darstellung linearer Operatoren vor. Für die einfachere Anwendung dieser Darstellung präsentieren wir eine freie Softwarearchitektur und demonstrieren deren Vorzüge, wenn sie für die Rekonstruktion in einem CS-System genutzt wird. Konkret wird der Nutzen dieser Bibliothek, einerseits für das Ermitteln von Defektpositionen in Prüfkörpern mittels Ultraschall, und andererseits für das Schätzen von Streuern in einem Funkkanal aus Ultrabreitbanddaten, demonstriert. Darüber hinaus stellen wir für die Verarbeitung der Ultraschalldaten eine Rekonstruktionspipeline vor, welche Daten verarbeitet, die im Frequenzbereich Unterabtastung erfahren haben. Wir beschreiben effiziente Algorithmen, die bei der Modellierung und der Rekonstruktion zum Einsatz kommen und wir leiten asymptotische Resultate für die benötigte Anzahl von Messwerten, sowie die zu erwartenden Lokalisierungsgenauigkeiten der Defekte her. Wir zeigen auf, dass das vorgestellte System starke Kompression zulässt, ohne die Bildgebung und Defektlokalisierung maßgeblich zu beeinträchtigen. Für die Lokalisierung von Streuern mittels Ultrabreitbandradaren stellen wir ein CS-System vor, welches auf einem Random Demodulators basiert. Im Vergleich zu existierenden Messverfahren ist die hieraus resultierende Schätzung der Kanalimpulsantwort robuster gegen die Effekte von zeitvarianten Funkkanälen. Um den inhärenten Modellfehler, den gitterbasiertes CS begehen muss, zu beseitigen, zeigen wir auf wie Atomic Norm Minimierung es erlaubt ohne die Einschränkung auf ein endliches und diskretes Gitter R-dimensionale spektrale Komponenten aus komprimierten Beobachtungen zu schätzen. Hierzu leiten wir eine R-dimensionale Variante des ADMM her, welcher dazu in der Lage ist die Signalkovarianz in diesem allgemeinen Szenario zu schätzen. Weiterhin zeigen wir, wie dieser Ansatz zur Richtungsschätzung mit realistischen Antennenarraygeometrien genutzt werden kann. In diesem Zusammenhang präsentieren wir auch eine Methode, welche mittels Stochastic gradient descent Messmatrizen ermitteln kann, die sich gut für Parameterschätzung eignen. Die hieraus resultierenden Kompressionsverfahren haben die Eigenschaft, dass die Schätzgenauigkeit über den gesamten Parameterraum ein möglichst uniformes Verhalten zeigt. Zuletzt zeigen wir auf, dass die Kombination des ADMM und des Stochastic Gradient descent das Design eines CS-Systems ermöglicht, welches in diesem gitterfreien Szenario wünschenswerte Eigenschaften hat.Along with the ever increasing number of sensors, which are also generating rapidly growing amounts of data, the traditional paradigm of sampling adhering the Nyquist criterion is facing an equally increasing number of obstacles. The rather recent theory of Compressive Sensing (CS) promises to alleviate some of these drawbacks by proposing to generalize the sampling and reconstruction schemes such that the acquired samples can contain more complex information about the signal than Nyquist samples. The proposed measurement process is more complex and the reconstruction algorithms necessarily need to be nonlinear. Additionally, the hardware design process needs to be revisited as well in order to account for this new acquisition scheme. Hence, one can identify a trade-off between information that is contained in individual samples of a signal and effort during development and operation of the sensing system. This thesis addresses the necessary steps to shift the mentioned trade-off more to the favor of CS. We do so by providing new results that make CS easier to deploy in practice while also maintaining the performance indicated by theoretical results. The sparsity order of a signal plays a central role in any CS system. Hence, we present a method to estimate this crucial quantity prior to recovery from a single snapshot. As we show, this proposed Sparsity Order Estimation method allows to improve the reconstruction error compared to an unguided reconstruction. During the development of the theory we notice that the matrix-free view on the involved linear mappings offers a lot of possibilities to render the reconstruction and modeling stage much more efficient. Hence, we present an open source software architecture to construct these matrix-free representations and showcase its ease of use and performance when used for sparse recovery to detect defects from ultrasound data as well as estimating scatterers in a radio channel using ultra-wideband impulse responses. For the former of these two applications, we present a complete reconstruction pipeline when the ultrasound data is compressed by means of sub-sampling in the frequency domain. Here, we present the algorithms for the forward model, the reconstruction stage and we give asymptotic bounds for the number of measurements and the expected reconstruction error. We show that our proposed system allows significant compression levels without substantially deteriorating the imaging quality. For the second application, we develop a sampling scheme to acquire the channel Impulse Response (IR) based on a Random Demodulator that allows to capture enough information in the recorded samples to reliably estimate the IR when exploiting sparsity. Compared to the state of the art, this in turn allows to improve the robustness to the effects of time-variant radar channels while also outperforming state of the art methods based on Nyquist sampling in terms of reconstruction error. In order to circumvent the inherent model mismatch of early grid-based compressive sensing theory, we make use of the Atomic Norm Minimization framework and show how it can be used for the estimation of the signal covariance with R-dimensional parameters from multiple compressive snapshots. To this end, we derive a variant of the ADMM that can estimate this covariance in a very general setting and we show how to use this for direction finding with realistic antenna geometries. In this context we also present a method based on a Stochastic gradient descent iteration scheme to find compression schemes that are well suited for parameter estimation, since the resulting sub-sampling has a uniform effect on the whole parameter space. Finally, we show numerically that the combination of these two approaches yields a well performing grid-free CS pipeline
    corecore