3,748 research outputs found

    Construction of harmonic diffeomorphisms and minimal graphs

    Get PDF
    We study complete minimal graphs in HxR, which take asymptotic boundary values plus and minus infinity on alternating sides of an ideal inscribed polygon Γ in H. We give necessary and sufficient conditions on the "lenghts" of the sides of the polygon (and all inscribed polygons in Γ) that ensure the existence of such a graph. We then apply this to construct entire minimal graphs in HxR that are conformally the complex plane C. The vertical projection of such a graph yields a harmonic diffeomorphism from C onto H, disproving a conjecture of Rick Schoen

    Holes or Empty Pseudo-Triangles in Planar Point Sets

    Full text link
    Let E(k,)E(k, \ell) denote the smallest integer such that any set of at least E(k,)E(k, \ell) points in the plane, no three on a line, contains either an empty convex polygon with kk vertices or an empty pseudo-triangle with \ell vertices. The existence of E(k,)E(k, \ell) for positive integers k,3k, \ell\geq 3, is the consequence of a result proved by Valtr [Discrete and Computational Geometry, Vol. 37, 565--576, 2007]. In this paper, following a series of new results about the existence of empty pseudo-triangles in point sets with triangular convex hulls, we determine the exact values of E(k,5)E(k, 5) and E(5,)E(5, \ell), and prove bounds on E(k,6)E(k, 6) and E(6,)E(6, \ell), for k,3k, \ell\geq 3. By dropping the emptiness condition, we define another related quantity F(k,)F(k, \ell), which is the smallest integer such that any set of at least F(k,)F(k, \ell) points in the plane, no three on a line, contains a convex polygon with kk vertices or a pseudo-triangle with \ell vertices. Extending a result of Bisztriczky and T\'oth [Discrete Geometry, Marcel Dekker, 49--58, 2003], we obtain the exact values of F(k,5)F(k, 5) and F(k,6)F(k, 6), and obtain non-trivial bounds on F(k,7)F(k, 7).Comment: A minor error in the proof of Theorem 2 fixed. Typos corrected. 19 pages, 11 figure

    Graphs with Plane Outside-Obstacle Representations

    Full text link
    An \emph{obstacle representation} of a graph consists of a set of polygonal obstacles and a distinct point for each vertex such that two points see each other if and only if the corresponding vertices are adjacent. Obstacle representations are a recent generalization of classical polygon--vertex visibility graphs, for which the characterization and recognition problems are long-standing open questions. In this paper, we study \emph{plane outside-obstacle representations}, where all obstacles lie in the unbounded face of the representation and no two visibility segments cross. We give a combinatorial characterization of the biconnected graphs that admit such a representation. Based on this characterization, we present a simple linear-time recognition algorithm for these graphs. As a side result, we show that the plane vertex--polygon visibility graphs are exactly the maximal outerplanar graphs and that every chordal outerplanar graph has an outside-obstacle representation.Comment: 12 pages, 7 figure

    On Polygons Excluding Point Sets

    Get PDF
    By a polygonization of a finite point set SS in the plane we understand a simple polygon having SS as the set of its vertices. Let BB and RR be sets of blue and red points, respectively, in the plane such that BRB\cup R is in general position, and the convex hull of BB contains kk interior blue points and ll interior red points. Hurtado et al. found sufficient conditions for the existence of a blue polygonization that encloses all red points. We consider the dual question of the existence of a blue polygonization that excludes all red points RR. We show that there is a minimal number K=K(l)K=K(l), which is polynomial in ll, such that one can always find a blue polygonization excluding all red points, whenever kKk\geq K. Some other related problems are also considered.Comment: 14 pages, 15 figure

    On k-Convex Polygons

    Get PDF
    We introduce a notion of kk-convexity and explore polygons in the plane that have this property. Polygons which are \mbox{kk-convex} can be triangulated with fast yet simple algorithms. However, recognizing them in general is a 3SUM-hard problem. We give a characterization of \mbox{22-convex} polygons, a particularly interesting class, and show how to recognize them in \mbox{O(nlogn)O(n \log n)} time. A description of their shape is given as well, which leads to Erd\H{o}s-Szekeres type results regarding subconfigurations of their vertex sets. Finally, we introduce the concept of generalized geometric permutations, and show that their number can be exponential in the number of \mbox{22-convex} objects considered.Comment: 23 pages, 19 figure
    corecore