9,078 research outputs found

    Recognizing Graph Theoretic Properties with Polynomial Ideals

    Get PDF
    Many hard combinatorial problems can be modeled by a system of polynomial equations. N. Alon coined the term polynomial method to describe the use of nonlinear polynomials when solving combinatorial problems. We continue the exploration of the polynomial method and show how the algorithmic theory of polynomial ideals can be used to detect k-colorability, unique Hamiltonicity, and automorphism rigidity of graphs. Our techniques are diverse and involve Nullstellensatz certificates, linear algebra over finite fields, Groebner bases, toric algebra, convex programming, and real algebraic geometry.Comment: 20 pages, 3 figure

    Hamilton cycles in highly connected and expanding graphs

    Full text link
    In this paper we prove a sufficient condition for the existence of a Hamilton cycle, which is applicable to a wide variety of graphs, including relatively sparse graphs. In contrast to previous criteria, ours is based on only two properties: one requiring expansion of ``small'' sets, the other ensuring the existence of an edge between any two disjoint ``large'' sets. We also discuss applications in positional games, random graphs and extremal graph theory.Comment: 19 page

    The Cycle Spectrum of Claw-free Hamiltonian Graphs

    Full text link
    If GG is a claw-free hamiltonian graph of order nn and maximum degree Δ\Delta with Δ24\Delta\geq 24, then GG has cycles of at least min{n,32Δ}2\min\left\{ n,\left\lceil\frac{3}{2}\Delta\right\rceil\right\}-2 many different lengths.Comment: 9 page

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio
    corecore