67 research outputs found

    Computerized Approaches for Retinal Microaneurysm Detection

    Get PDF
    The number of diabetic patients throughout the world is increasing with a very high rate. The patients suffering from long term diabetes have a very high risk of generating retinal disorder called Diabetic Retinopathy(DR). The disease is a complication of diabetes and may results in irreversible blindness to the patient. Early diagnosis and routine checkups by expert ophthalmologist possibly prevent the vision loss. But the number of people to be screen exceeds the number of experts, especially in rural areas. Thus the computerized screening systems are needed which will accurately screen the large amount of population and identify healthy and diseased people. Thus the workload on experts is reduced significantly. Microaneurysms(MA) are first recognizable signs of DR. Thus early detection of DR requires accurate detection of Microaneurysms. Computerized diagnosis insures reliable and accurate detection of MA's. The paper overviews the approaches for computerized detection of retinal Microaneurysms

    EARLY DIAGNOSIS OF DIABETIC RETINOPATHY BY THE DETECTION OF MICROANEURYSMS IN FUNDUS IMAGES

    Get PDF
    The detection of microaneurysms is crucial, as it is an early indicator of a complication of prolonged diabetes called Diabetic Retinopathy. In this paper, an automated approach is proposed to detect microaneurysms from retinal fundus images. Firstly, the magenta plane of the input image is extracted and a few preprocessing techniques are carried out. This is followed by the localization and the removal of the optic disk. The threshold value is determined and is optimized using Firefly algorithm. Then top hat transform is applied to detect the microaneurysms. The image quality parameters and the performance parameters were calculated and analyzed on the images of the DIARETDB1 database. The experimental results yielded a sensitivity of 99.80% before optimization and 100% after optimization

    Retinal Blood Vessel Segmentation Algorithm for Diabetic Retinopathy using Wavelet: A Survey

    Get PDF
    Blood vessel structure in retinal images have an important role in diagnosis of diabetic retinopathy. There are several method present for automatic retinal vessel segmentation. For developing retinal screening systems blood vessel segmentation is the basic foundation since vessels serve as one of the main retinal landmark features. The most common signs of diabetic retinopathy include hemorrhages, cotton wool spots, dilated retinal veins, and hard exudates. A patient with diabetic retinopathy disease has to undergo periodic screening of eye. For the diagnosis, doctors use color retinal images of a patient required from digital fundus camera. We present a method that uses Gabor wavelet for vessel enhancement due to their ability to enhance directional structures and euclidean distance technique for accurate vessel segmentation. Retinal angiography images are mainly used in the diagnosis of diseases such as diabetic retinopathy and hypertension etc. In diabetic retinopathy structure of retinal blood vessels change that leads to adult blindness. To overcome this problem automatic biomedical diagnosis system is required.The main stage of diabetic retinopathy are Non-proliferative diabetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR). Eye care specialist can screen vessel abnormalities using an efficient and effective computer based approach to the automated segmentation of blood vessels in retinal images. Automated segmentation reduces the time required by a physician or a skilled technician for manual labeling. Thus a reliable method of vessel segmentation would be valuable for the early detection and characterization of changes due to such diseases. This article presents the automated vessel enhancement and segmentation technique for colored retinal images. Segmentation of blood vessels from image is a difficult task due to thin vessels and low contrast between vessel edges and background. The proposed method enhances the vascular pattern using Gabor wavelet and then it uses euclidean distance technique to generate gray level segmented image. DOI: 10.17762/ijritcc2321-8169.15030

    Automatic Blood Vessel Extraction of Fundus Images Employing Fuzzy Approach

    Get PDF
    Diabetic Retinopathy is a retinal vascular disease that is characterized by progressive deterioration of blood vessels in the retina and is distinguished by the appearance of different types of clinical lesions like microaneurysms, hemorrhages, exudates etc. Automated detection of the lesions plays significant role for early diagnosis by enabling medication for the treatment of severe eye diseases preventing visual loss. Extraction of blood vessels can facilitate ophthalmic services by automating computer aided screening of fundus images. This paper presents blood vessel extraction algorithms with ensemble of pre-processing and post-processing steps which enhance the image quality for better analysis of retinal images for automated detection. Extensive performance based evaluation of the proposed approaches is done over four databases on the basis of statistical parameters. Comparison of both blood vessel extraction techniques on different databases reveals that fuzzy based approach gives better results as compared to Kirsch’s based algorithm. The results obtained from this study reveal that 89% average accuracy is offered by the proposed MBVEKA and 98% for proposed BVEFA

    A Hybrid Convolutional Neural Network Model for Automatic Diabetic Retinopathy Classification From Fundus Images

    Get PDF
    Objective: Diabetic Retinopathy (DR) is a retinal disease that can cause damage to blood vessels in the eye, that is the major cause of impaired vision or blindness, if not treated early. Manual detection of diabetic retinopathy is time-consuming and prone to human error due to the complex structure of the eye. Methods & Results: various automatic techniques have been proposed to detect diabetic retinopathy from fundus images. However, these techniques are limited in their ability to capture the complex features underlying diabetic retinopathy, particularly in the early stages. In this study, we propose a novel approach to detect diabetic retinopathy using a convolutional neural network (CNN) model. The proposed model extracts features using two different deep learning (DL) models, Resnet50 and Inceptionv3, and concatenates them before feeding them into the CNN for classification. The proposed model is evaluated on a publicly available dataset of fundus images. The experimental results demonstrate that the proposed CNN model achieves higher accuracy, sensitivity, specificity, precision, and f1 score compared to state-of-the-art methods, with respective scores of 96.85%, 99.28%, 98.92%, 96.46%, and 98.65%.©2023 The Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/fi=vertaisarvioitu|en=peerReviewed
    • …
    corecore