29 research outputs found

    Algorithm based new Tone Reservation method for mitigating PAPR in OFDM systems

    Get PDF
    There are abundant methods to mitigate PAPR in OFDM signals among which algorithm based tone reservation is of great popularity owing to its low complexity as well as decent BER. Here we have put forward a new distinct algorithm based Tone Reservation technique which is not only less complex and calculates its own threshold as well as PRT signal (unlike other algorithms requiring predetermined threshold and PRT) but also aptly modifies the data by bit by bit comparison with a modified copy of itself (algorithm modified) thus scaling the peaks as and providing a decent BER and good PAPR reduction.

    Modified Alternative-signal Technique for Sequential Optimisation for PAPR Reduction in OFDM-OQAM Systems

    Get PDF
    A modified alternative signal technique for reducing peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing systems employing offset quadrature amplitude modulation (OFDM-OQAM) is proposed. Lower PAPR reduces the complexity of digital to analog converters and results in increasing the efficiency of power amplifiers. The main objective of the algorithm is to decrease PAPR with low complexity. The alternative signal method involves the individual alternative signal (AS-I) and combined alternative signal (AS-C) algorithms. Both the algorithms decrease the peak to average power ratio of OFDM-OQAM signals and AS-C algorithm performs better in decreasing PAPR. However the complexity of AS-C algorithm is very high compared to that of AS-I. To achieve reduction in PAPR with low complexity, modified alternative signal technique with sequential optimisation (MAS-S) is proposed. The quantitative PAPR analysis and complexity analysis of the proposed algorithm are carried out. It is demonstrated that MAS-S algorithm simultaneously achieves PAPR reduction and low complexity

    Peak to average power ratio reduction and error control in MIMO-OFDM HARQ System

    Get PDF
    Currently, multiple-input multiple-output orthogonal frequency division multiplexing (MIMOOFDM) systems underlie crucial wireless communication systems such as commercial 4G and 5G networks, tactical communication, and interoperable Public Safety communications. However, one drawback arising from OFDM modulation is its resulting high peak-to-average power ratio (PAPR). This problem increases with an increase in the number of transmit antennas. In this work, a new hybrid PAPR reduction technique is proposed for space-time block coding (STBC) MIMO-OFDM systems that combine the coding capabilities to PAPR reduction methods, while leveraging the new degree of freedom provided by the presence of multiple transmit chairs (MIMO). In the first part, we presented an extensive literature review of PAPR reduction techniques for OFDM and MIMO-OFDM systems. The work developed a PAPR reduction technique taxonomy, and analyzed the motivations for reducing the PAPR in current communication systems, emphasizing two important motivations such as power savings and coverage gain. In the tax onomy presented here, we include a new category, namely, hybrid techniques. Additionally, we drew a conclusion regarding the importance of hybrid PAPR reduction techniques. In the second part, we studied the effect of forward error correction (FEC) codes on the PAPR for the coded OFDM (COFDM) system. We simulated and compared the CCDF of the PAPR and its relationship with the autocorrelation of the COFDM signal before the inverse fast Fourier transform (IFFT) block. This allows to conclude on the main characteristics of the codes that generate high peaks in the COFDM signal, and therefore, the optimal parameters in order to reduce PAPR. We emphasize our study in FEC codes as linear block codes, and convolutional codes. Finally, we proposed a new hybrid PAPR reduction technique for an STBC MIMO-OFDM system, in which the convolutional code is optimized to avoid PAPR degradation, which also combines successive suboptimal cross-antenna rotation and inversion (SS-CARI) and iterative modified companding and filtering schemes. The new method permits to obtain a significant net gain for the system, i.e., considerable PAPR reduction, bit error rate (BER) gain as compared to the basic MIMO-OFDM system, low complexity, and reduced spectral splatter. The new hybrid technique was extensively evaluated by simulation, and the complementary cumulative distribution function (CCDF), the BER, and the power spectral density (PSD) were compared to the original STBC MIMO-OFDM signal

    On PAPR Reduction of OFDM using Partial Transmit Sequence with Intelligent Optimization Algorithms

    Get PDF
    In recent time, the demand for multimedia data services over wireless links has grown up rapidly. Orthogonal Frequency Division Multiplexing (OFDM) forms the basis for all 3G and beyond wireless communication standards due to its efficient frequency utilization permitting near ideal data rate and ubiquitous coverage with high mobility. OFDM signals are prone to high peak-to-average-power ratio (PAPR). Unfortunately, the high PAPR inherent to OFDM signal envelopes occasionally drives high power amplifiers (HPAs) to operate in the nonlinear region of their characteristic leading out-of-band radiation, reduction in efficiency of communication system etc. A plethora of research has been devoted to reducing the performance degradation due to the PAPR problem inherent to OFDM systems. Advanced techniques such as partial transmit sequences (PTS) and selected mapping (SLM) have been considered most promising for PAPR reduction. Such techniques are seen to be efficient for distortion-less signal processing but suffer from computational complexity and often requires transmission of extra information in terms of several side information (SI) bits leading to loss in effective data rate. This thesis investigates the PAPR problem using Partial Transmit Sequence (PTS) scheme, where optimization is achieved with evolutionary bio-inspired metaheuristic stochastic algorithms. The phase factor optimization in PTS is used for PAPR reduction. At first, swarm intelligence based Firefly PTS (FF-PTS) algorithm is proposed which delivers improved PAPR performance with reduced searching complexity. Following this, Cuckoo Search based PTS (CS-PTS) technique is presented, which offers good PAPR performance in terms of solution quality and convergence speed. Lastly, Improved Harmony search based PTS (IHS-PTS) is introduced, which provides improved PAPR. The algorithm has simple structure with a very few parameters for larger PTS sub-blocks. The PAPR performance of the proposed technique with different parameters is also verified through extensive computer simulations. Furthermore, complexity analysis of algorithms demonstrates that the proposed schemes offer significant complexity reduction when compared to standard PAPR reduction techniques. Findings have been validated through extensive simulation tests

    Peak-to-Average Power Ratio Reduction of DOCSIS 3.1 Downstream Signals

    Get PDF
    Tone reservation (TR) is an attractive and widely used method for peak-to-average power ratio (PAPR) reduction of orthogonal frequency division multiplexing (OFDM) signals, where both transmitter and receiver agree upon a number of subcarriers or tones to be reserved to generate a peak canceling signal that can reduce the peak power of the transmitted signals. The tones are selected to be mutually exclusive with the tones used for data transmission, which allows the receiver to extract the data symbols without distortions. This thesis presents two novel PAPR reduction algorithms for OFDM signals based on the TR principle, which do not distort the transmitted signals. The first proposed algorithm is performed in the time domain, whereas the second algorithm is a new clipping-and-filtering method. Both algorithms consist of two stages. The first stage, which is done off-line, creates a set of canceling signals based on the settings of the OFDM system. In particular, these signals are constructed to cancel signals at different levels of maximum instantaneous power that are above a predefined threshold. The second stage, which is online and iterative, reduces the signal peaks by using the canceling signals constructed in the first stage. The precalculated canceling signals can be updated when different tone sets are selected for data transmission, accommodating many practical applications. Simulation results show that the proposed algorithms achieve slightly better PAPR reduction performance than the conventional algorithms. Moreover, such performance is achieved with much lower computational complexity in terms of numbers of multiplications and additions per iteration. Among the two proposed algorithms, the time-domain algorithm gives the best peak reduction performance but the clipping-and-filtering algorithm requires considerably less number of multiplications per iteration and can be efficiently implemented using the fast Fourier transform (FFT)/inverse fast Fourier transform (IFFT) structure

    Boosted PTS Method with Mu-Law Companding Techniques for PAPR Reduction in OFDM Systems

    Get PDF
    This paper proposes an enhanced PAPR reduction technique which combines an enhanced PTS method with Mu-Law companding. The enhanced PTS method improves performances in both the partitioning and phase rotation steps. Enhancement in partitioning is achieved through a judicious incorporation of AP-PTS scheme into the IP-PTS. As for phase rotation, an optimal set of rotation vectors is derived based on the correlation properties of candidate signals. The PAPR reduction of this enhanced PTS method is further improved by annexing Mu-Law companding at the end of the enhanced PTS. This application of Mu-Law characteristic in the time domain of OFDM signal significantly improves the PAPR reduction capability of the approach. Simulation results show that the PAPR performance of the enhanced PTS method with Mu-Law companding technique on various scenarios with different modulation schemes is better than that of the PRP-PTS. This approach can be considered as a very attractive candidate for achieving a significant reduction of PAPR, while maintaining a low computational complexity
    corecore