32 research outputs found

    A Multistage Method for SCMA Codebook Design Based on MDS Codes

    Get PDF
    Sparse Code Multiple Access (SCMA) has been recently proposed for the future generation of wireless communication standards. SCMA system design involves specifying several parameters. In order to simplify the procedure, most works consider a multistage design approach. Two main stages are usually emphasized in these methods: sparse signatures design (equivalently, resource allocation) and codebook design. In this paper, we present a novel SCMA codebook design method. The proposed method considers SCMA codebooks structured with an underlying vector space obtained from classical block codes. In particular, when using maximum distance separable (MDS) codes, our proposed design provides maximum signal-space diversity with a relatively small alphabet. The use of small alphabets also helps to maintain desired properties in the codebooks, such as low peak-to-average power ratio and low-complexity detection.Comment: Submitted to IEEE Wireless Communication Letter

    On the design of multiuser codebooks for uplink SCMA systems

    Get PDF
    Sparse code multiple access (SCMA) is a promising uplink multiple access technique that can achieve superior spectral efficiency, provided that multidimensional codebooks are carefully designed. In this letter, we investigate the multiuser codebook design for SCMA systems over Rayleigh fading channels. The criterion of the proposed design is derived from the cutoff rate analysis of the equivalent multiple-input multiple-output system. Furthermore, new codebooks with signal-space diversity are suggested, while simulations show that this criterion is efficient in developing codebooks with substantial performance improvement, compared with the existing ones

    SCMA with Low Complexity Symmetric Codebook Design for Visible Light Communication

    Full text link
    Sparse code multiple access (SCMA) is attracting significant research interests currently, which is considered as a promising multiple access technique for 5G systems. It serves as a good candidate for the future communication network with massive nodes due to its capability of handling user overloading. Introducing SCMA to visible light communication (VLC) can provide another opportunity on design of transmission protocols for the communication network with massive nodes due to the limited communication range of VLC, which reduces the interference intensity. However, when applying SCMA in VLC systems, we need to modify the SCMA codebook to accommodate the real and positive signal requirement for VLC.We apply multidimensional constellation design methods to SCMA codebook. To reduce the design complexity, we also propose a symmetric codebook design. For all the proposed design approaches, the minimum Euclidean distance aims to be maximized. Our symmetric codebook design can reduce design and detection complexity simultaneously. Simulation results show that our design implies fast convergence with respect to the number of iterations, and outperforms the design that simply modifies the existing approaches to VLC signal requirements

    An Error Rate Comparison of Power Domain Non-orthogonal Multiple Access and Sparse Code Multiple Access

    Get PDF
    Non-orthogonal Multiple Access (NOMA) has been envisioned as one of the key enabling techniques to fulfill the requirements of future wireless networks. The primary benefit of NOMA is higher spectrum efficiency compared to Orthogonal Multiple Access (OMA). This paper presents an error rate comparison of two distinct NOMA schemes, i.e., power domain NOMA (PD-NOMA) and Sparse Code Multiple Access (SCMA). In a typical PD-NOMA system, successive interference cancellation (SIC) is utilized at the receiver, which however may lead to error propagation. In comparison, message passing decoding is employed in SCMA. To attain the best error rate performance of PD-NOMA, we optimize the power allocation with the aid of pairwise error probability and then carry out the decoding using generalized sphere decoder (GSD). Our extensive simulation results show that SCMA system with “5×10” setting (i.e., ten users communicate over five subcarriers, each active over two subcarriers) achieves better uncoded BER and coded BER performance than both typical “1×2” and “2×4” PD-NOMA systems in uplink Rayleigh fading channel. Finally, the impacts of channel estimation error on SCMA , SIC and GSD based PD-NOMA and the complexity of multiuser detection schemes are also discussed

    Resource Allocation in the RIS Assisted SCMA Cellular Network Coexisting with D2D Communications

    Full text link
    The cellular network coexisting with device-to-device (D2D) communications has been studied extensively. Reconfigurable intelligent surface (RIS) and non-orthogonal multiple access (NOMA) are promising technologies for the evolution of 5G, 6G and beyond. Besides, sparse code multiple access (SCMA) is considered suitable for next-generation wireless network in code-domain NOMA. In this paper, we consider the RIS-aided uplink SCMA cellular network simultaneously with D2D users. We formulate the optimization problem which aims to maximize the cellular sum-rate by jointly designing D2D users resource block (RB) association, the transmitted power for both cellular users and D2D users, and the phase shifts at the RIS. The power limitation and users communication requirements are considered. The problem is non-convex, and it is challenging to solve it directly. To handle this optimization problem, we propose an efficient iterative algorithm based on block coordinate descent (BCD) method. The original problem is decoupled into three subproblems to solve separately. Simulation results demonstrate that the proposed scheme can significantly improve the sum-rate performance over various schemes.Comment: IEEE Acces
    corecore