90 research outputs found

    A comprehensive video codec comparison

    Get PDF
    In this paper, we compare the video codecs AV1 (version 1.0.0-2242 from August 2019), HEVC (HM and x265), AVC (x264), the exploration software JEM which is based on HEVC, and the VVC (successor of HEVC) test model VTM (version 4.0 from February 2019) under two fair and balanced configurations: All Intra for the assessment of intra coding and Maximum Coding Efficiency with all codecs being tuned for their best coding efficiency settings. VTM achieves the highest coding efficiency in both configurations, followed by JEM and AV1. The worst coding efficiency is achieved by x264 and x265, even in the placebo preset for highest coding efficiency. AV1 gained a lot in terms of coding efficiency compared to previous versions and now outperforms HM by 24% BD-Rate gains. VTM gains 5% over AV1 in terms of BD-Rates. By reporting separate numbers for JVET and AOM test sequences, it is ensured that no bias in the test sequences exists. When comparing only intra coding tools, it is observed that the complexity increases exponentially for linearly increasing coding efficiency

    Direct Optimisation of λ\boldsymbol\lambda for HDR Content Adaptive Transcoding in AV1

    Get PDF
    Since the adoption of VP9 by Netflix in 2016, royalty-free coding standards continued to gain prominence through the activities of the AOMedia consortium. AV1, the latest open source standard, is now widely supported. In the early years after standardisation, HDR video tends to be under served in open source encoders for a variety of reasons including the relatively small amount of true HDR content being broadcast and the challenges in RD optimisation with that material. AV1 codec optimisation has been ongoing since 2020 including consideration of the computational load. In this paper, we explore the idea of direct optimisation of the Lagrangian λ\lambda parameter used in the rate control of the encoders to estimate the optimal Rate-Distortion trade-off achievable for a High Dynamic Range signalled video clip. We show that by adjusting the Lagrange multiplier in the RD optimisation process on a frame-hierarchy basis, we are able to increase the Bjontegaard difference rate gains by more than 3.98×\times on average without visually affecting the quality.Comment: SPIE2022:Applications of Digital Image Processing XLV accepted manuscrip

    Comparison of HDR quality metrics in Per-Clip Lagrangian multiplier optimisation with AV1

    Get PDF
    The complexity of modern codecs along with the increased need of delivering high-quality videos at low bitrates has reinforced the idea of a per-clip tailoring of parameters for optimised rate-distortion performance. While the objective quality metrics used for Standard Dynamic Range (SDR) videos have been well studied, the transitioning of consumer displays to support High Dynamic Range (HDR) videos, poses a new challenge to rate-distortion optimisation. In this paper, we review the popular HDR metrics DeltaE100 (DE100), PSNRL100, wPSNR, and HDR-VQM. We measure the impact of employing these metrics in per-clip direct search optimisation of the rate-distortion Lagrange multiplier in AV1. We report, on 35 HDR videos, average Bjontegaard Delta Rate (BD-Rate) gains of 4.675%, 2.226%, and 7.253% in terms of DE100, PSNRL100, and HDR-VQM. We also show that the inclusion of chroma in the quality metrics has a significant impact on optimisation, which can only be partially addressed by the use of chroma offsets.Comment: Accepted version for ICME 2023 Special Session, "Optimised Media Delivery
    • …
    corecore