15 research outputs found

    Sequent Calculus in the Topos of Trees

    Full text link
    Nakano's "later" modality, inspired by G\"{o}del-L\"{o}b provability logic, has been applied in type systems and program logics to capture guarded recursion. Birkedal et al modelled this modality via the internal logic of the topos of trees. We show that the semantics of the propositional fragment of this logic can be given by linear converse-well-founded intuitionistic Kripke frames, so this logic is a marriage of the intuitionistic modal logic KM and the intermediate logic LC. We therefore call this logic KMlin\mathrm{KM}_{\mathrm{lin}}. We give a sound and cut-free complete sequent calculus for KMlin\mathrm{KM}_{\mathrm{lin}} via a strategy that decomposes implication into its static and irreflexive components. Our calculus provides deterministic and terminating backward proof-search, yields decidability of the logic and the coNP-completeness of its validity problem. Our calculus and decision procedure can be restricted to drop linearity and hence capture KM.Comment: Extended version, with full proof details, of a paper accepted to FoSSaCS 2015 (this version edited to fix some minor typos

    Semantic Incompleteness of del Cerro and Herzig's Hilbert System for a Combination of Classical and Intuitionistic Propositional Logic

    Get PDF
    This paper shows Hilbert system (C+J)-, given by del Cerro and Herzig (1996) is semantically incomplete. This system is proposed as a proof theory for Kripke semantics for a combination of intuitionistic and classical propositional logic, which is obtained by adding the natural semantic clause of classical implication into intuitionistic Kripke semantics. Although Hilbert system (C+J)- contains intuitionistic modus ponens as a rule, it does not contain classical modus ponens. This paper gives an argument ensuring that the system (C+J)- is semantically incomplete because of the absence of classical modus ponens. Our method is based on the logic of paradox, which is a paraconsistent logic proposed by Priest (1979)

    Lewis meets Brouwer: constructive strict implication

    Full text link
    C. I. Lewis invented modern modal logic as a theory of "strict implication". Over the classical propositional calculus one can as well work with the unary box connective. Intuitionistically, however, the strict implication has greater expressive power than the box and allows to make distinctions invisible in the ordinary syntax. In particular, the logic determined by the most popular semantics of intuitionistic K becomes a proper extension of the minimal normal logic of the binary connective. Even an extension of this minimal logic with the "strength" axiom, classically near-trivial, preserves the distinction between the binary and the unary setting. In fact, this distinction and the strong constructive strict implication itself has been also discovered by the functional programming community in their study of "arrows" as contrasted with "idioms". Our particular focus is on arithmetical interpretations of the intuitionistic strict implication in terms of preservativity in extensions of Heyting's Arithmetic.Comment: Our invited contribution to the collection "L.E.J. Brouwer, 50 years later

    Display calculi and other modal calculi: a comparison

    Get PDF
    International audienceIn this paper we introduce and compare four different syntactic methods for generating sequent calculi for the main systems of modal logic: the multiple sequents method, the higher-arity sequents method, the tree-hypersequents method and the display method. More precisely we show how the first three methods can all be translated in the fourth one. This result sheds new light on these generalisations of the sequent calculus and raises issues that will be examined in the last section

    The intensional side of algebraic-topological representation theorems

    Get PDF
    Stone representation theorems are a central ingredient in the metatheory of philosophical logics and are used to establish modal embedding results in a general but indirect and non-constructive way. Their use in logical embeddings will be reviewed and it will be shown how they can be circumvented in favour of direct and constructive arguments through the methods of analytic proof theory, and how the intensional part of the representation results can be recovered from the syntactic proof of those embeddings. Analytic methods will also be used to establish the embedding of subintuitionistic logics into the corresponding modal logics. Finally, proof-theoretic embeddings will be interpreted as a reduction of classes of word problems.Peer reviewe

    Dualities in modal logic

    Get PDF
    Categorical dualities are an important tool in the study of (modal) logics. They offer conceptual understanding and enable the transfer of results between the different semantics of a logic. As such, they play a central role in the proofs of completeness theorems, Sahlqvist theorems and Goldblatt-Thomason theorems. A common way to obtain dualities is by extending existing ones. For example, Jonsson-Tarski duality is an extension of Stone duality. A convenient formalism to carry out such extensions is given by the dual categorical notions of algebras and coalgebras. Intuitively, these allow one to isolate the new part of a duality from the existing part. In this thesis we will derive both existing and new dualities via this route, and we show how to use the dualities to investigate logics. However, not all (modal logical) paradigms fit the (co)algebraic perspective. In particular, modal intuitionistic logics do not enjoy a coalgebraic treatment, and there is a general lack of duality results for them. To remedy this, we use a generalisation of both algebras and coalgebras called dialgebras. Guided by the research field of coalgebraic logic, we introduce the framework of dialgebraic logic. We show how a large class of modal intuitionistic logics can be modelled as dialgebraic logics and we prove dualities for them. We use the dialgebraic framework to prove general completeness, Hennessy-Milner, representation and Goldblatt-Thomason theorems, and instantiate this to a wide variety of modal intuitionistic logics. Additionally, we use the dialgebraic perspective to investigate modal extensions of the meet-implication fragment of intuitionistic logic. We instantiate general dialgebraic results, and describe how modal meet-implication logics relate to modal intuitionistic logics

    Topological and Multi-Topological Frames in the Context of Intuitionistic Modal Logic

    Get PDF
    We present three examples of topological semantics for intuitionistic modal logic with one modal operator □. We show that it is possible to treat neighborhood models, introduced earlier, as topological or multi-topological. From the neighborhood point of view, our method is based on differences between properties of minimal and maximal neighborhoods. Also we propose transformation of multitopological spaces into the neighborhood structures
    corecore