245 research outputs found

    Three Puzzles on Mathematics, Computation, and Games

    Full text link
    In this lecture I will talk about three mathematical puzzles involving mathematics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible?Comment: ICM 2018 plenary lecture, Rio de Janeiro, 36 pages, 7 Figure

    Synthesising Strategy Improvement and Recursive Algorithms for Solving 2.5 Player Parity Games

    Get PDF
    2.5 player parity games combine the challenges posed by 2.5 player reachability games and the qualitative analysis of parity games. These two types of problems are best approached with different types of algorithms: strategy improvement algorithms for 2.5 player reachability games and recursive algorithms for the qualitative analysis of parity games. We present a method that - in contrast to existing techniques - tackles both aspects with the best suited approach and works exclusively on the 2.5 player game itself. The resulting technique is powerful enough to handle games with several million states

    Violator Spaces: Structure and Algorithms

    Get PDF
    Sharir and Welzl introduced an abstract framework for optimization problems, called LP-type problems or also generalized linear programming problems, which proved useful in algorithm design. We define a new, and as we believe, simpler and more natural framework: violator spaces, which constitute a proper generalization of LP-type problems. We show that Clarkson's randomized algorithms for low-dimensional linear programming work in the context of violator spaces. For example, in this way we obtain the fastest known algorithm for the P-matrix generalized linear complementarity problem with a constant number of blocks. We also give two new characterizations of LP-type problems: they are equivalent to acyclic violator spaces, as well as to concrete LP-type problems (informally, the constraints in a concrete LP-type problem are subsets of a linearly ordered ground set, and the value of a set of constraints is the minimum of its intersection).Comment: 28 pages, 5 figures, extended abstract was presented at ESA 2006; author spelling fixe

    Symmetric Strategy Improvement

    Full text link
    Symmetry is inherent in the definition of most of the two-player zero-sum games, including parity, mean-payoff, and discounted-payoff games. It is therefore quite surprising that no symmetric analysis techniques for these games exist. We develop a novel symmetric strategy improvement algorithm where, in each iteration, the strategies of both players are improved simultaneously. We show that symmetric strategy improvement defies Friedmann's traps, which shook the belief in the potential of classic strategy improvement to be polynomial

    A survey of stochastic ω regular games

    Get PDF
    We summarize classical and recent results about two-player games played on graphs with ω-regular objectives. These games have applications in the verification and synthesis of reactive systems. Important distinctions are whether a graph game is turn-based or concurrent; deterministic or stochastic; zero-sum or not. We cluster known results and open problems according to these classifications
    corecore