77 research outputs found

    Millimeter-Scale and Energy-Efficient RF Wireless System

    Full text link
    This dissertation focuses on energy-efficient RF wireless system with millimeter-scale dimension, expanding the potential use cases of millimeter-scale computing devices. It is challenging to develop RF wireless system in such constrained space. First, millimeter-sized antennae are electrically-small, resulting in low antenna efficiency. Second, their energy source is very limited due to the small battery and/or energy harvester. Third, it is required to eliminate most or all off-chip devices to further reduce system dimension. In this dissertation, these challenges are explored and analyzed, and new methods are proposed to solve them. Three prototype RF systems were implemented for demonstration and verification. The first prototype is a 10 cubic-mm inductive-coupled radio system that can be implanted through a syringe, aimed at healthcare applications with constrained space. The second prototype is a 3x3x3 mm far-field 915MHz radio system with 20-meter NLOS range in indoor environment. The third prototype is a low-power BLE transmitter using 3.5x3.5 mm planar loop antenna, enabling millimeter-scale sensors to connect with ubiquitous IoT BLE-compliant devices. The work presented in this dissertation improves use cases of millimeter-scale computers by presenting new methods for improving energy efficiency of wireless radio system with extremely small dimensions. The impact is significant in the age of IoT when everything will be connected in daily life.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147686/1/yaoshi_1.pd

    Electronics for Power and Energy Management

    Get PDF

    A pW-Power Hz-Range Oscillator Operating With a 0.3-1.8-V Unregulated Supply

    Get PDF
    In this paper, a pW-power relaxation oscillator for sensor node applications is presented. The proposed oscillator operates over a wide supply voltage range from nominal down to deep sub-threshold and requires only a sub-pF capacitor for Hz-range output frequency. A true pW-power operation is enabled thanks to the adoption of an architecture leveraging transistor operation in super-cutoff, the elimination of voltage regulation, and current reference. Indeed, the oscillator can be powered directly from highly variable voltage sources (e.g., harvesters and batteries over their whole charge/discharge cycle). This is achieved thanks to the wide supply voltage range, the low voltage sensitivity of the output frequency and the current drawn from the supply. A test chip of the proposed oscillator in 180 nm exhibits a nominal frequency of approximately 4 Hz, a supply voltage range from 1.8 V down to 0.3 V with 10%/V supply sensitivity, 8-18-pA current absorption, and 4%/°C thermal drift from -20 °C to 40 °C at an area of 1600 μm². To the best of the authors' knowledge, the proposed oscillator is the only one able to operate from sub-threshold to nominal voltage
    • …
    corecore