120 research outputs found

    Radar Detection, Tracking and Identification for UAV Sense and Avoid Applications

    Get PDF
    Advances in Unmanned Aerial Vehicle (UAV) technology have enabled wider access for the general public leading to more stringent flight regulations, such as the line of sight restriction, for hobbyists and commercial applications. Improving sensor technology for Sense And Avoid (SAA) systems is currently a major research area in the unmanned vehicle community. This thesis overviews efforts made to advance intelligent algorithms used to detect, track, and identify commercial UAV targets by enabling rapid prototyping of novel radar techniques such as micro-Doppler radar target identification or cognitive radar. To enable empirical radar signal processing evaluations, an S-Band and X-Band frequency modulated, software-defined radar testbed is designed, implemented, and evaluated with field measurements. The final evaluations provide proof of functionality, performance measurements, and limitations of this testbed and future software-defined radars. The testbed is comprised of open-source software and hardware meant to accelerate the development of a reliable, repeatable, and scalable SAA system for the wide range of new and existing UAVs

    Signal-Processing-Driven Integrated Circuits for Energy Constrained Microsystems.

    Full text link
    The exponential growth in IC technology has enabled low-cost and increasingly capable wireless sensor nodes which provide a promising way forward to realize the vision of a trillion connected sensors in the next decade. However there are still many design challenges ahead to make these sensor nodes small,low-cost,secure,reliable and energy-efficient to name a few. Since the wireless nodes are expected to operate on a limited energy source or in some cases on harvested energy, the energy consumption of each building block is of prime importance to prolong the life of a sensor node. It has been found that the radio communication when active has been one of the highest power consuming modules on a sensor node. Low-energy protocols, e.g. processing the raw sensor data on-node, are more energy efficient for some applications as compared to transmitting the raw data over a wireless channel to a cloud server. In this thesis we explore signal processing techniques to realize a low power radio solution for wireless communication. Two prototype chips have been designed and their performance has been evaluated. The first prototype chip exploits compressed sensing for Ultra-Wide-Band (UWB) communication. UWB signals typically require a high ADC sampling rate in the receiver which results in high power consumption. Compressed sensing is demonstrated to relax the ADC sampling rate to save power. The second prototype chip exploits the sensitivity vs. power trade-off in a radio receiver to achieve iso-performance at lower power consumption and the time-varying wireless channel characteristics are used to adapt the sampling frequency of the receiver based on the SNR/Link quality of the communication channel, saving power, while maintaining the desired system performance. It is envisioned that embedded machine learning will play a key role in the integration of sensory data with prior knowledge for distributed intelligent sensing which might enable reduced wireless network traffic to a cloud server. A Near-Threshold hardware accelerator for arbitrary Bayesian network was designed for clique-tree message passing algorithm used for probabilistic inference. The hardware accelerator was benchmarked by the mid-size ALARM Bayesian network with total energy consumption of 76nJ for 250µS execution time.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107130/1/oukhan_1.pd

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    COBE's search for structure in the Big Bang

    Get PDF
    The launch of Cosmic Background Explorer (COBE) and the definition of Earth Observing System (EOS) are two of the major events at NASA-Goddard. The three experiments contained in COBE (Differential Microwave Radiometer (DMR), Far Infrared Absolute Spectrophotometer (FIRAS), and Diffuse Infrared Background Experiment (DIRBE)) are very important in measuring the big bang. DMR measures the isotropy of the cosmic background (direction of the radiation). FIRAS looks at the spectrum over the whole sky, searching for deviations, and DIRBE operates in the infrared part of the spectrum gathering evidence of the earliest galaxy formation. By special techniques, the radiation coming from the solar system will be distinguished from that of extragalactic origin. Unique graphics will be used to represent the temperature of the emitting material. A cosmic event will be modeled of such importance that it will affect cosmological theory for generations to come. EOS will monitor changes in the Earth's geophysics during a whole solar color cycle

    Low-power adaptive control scheme using switching activity measurement method for reconfigurable analog-to-digital converters

    Get PDF
    Power consumption is a critical issue for portable devices. The ever-increasing demand for multimode wireless applications and the growing concerns towards power-aware green technology make dynamically reconfigurable hardware an attractive solution for overcoming the power issue. This is due to its advantages of flexibility, reusability, and adaptability. During the last decade, reconfigurable analog-to-digital converters (ReADCs) have been used to support multimode wireless applications. With the ability to adaptively scale the power consumption according to different operation modes, reconfigurable devices utilise the power supply efficiently. This can prolong battery life and reduce unnecessary heat emission to the environment. However, current adaptive mechanisms for ReADCs rely upon external control signals generated using digital signal processors (DSPs) in the baseband. This thesis aims to provide a single-chip solution for real-time and low-power ReADC implementations that can adaptively change the converter resolution according to signal variations without the need of the baseband processing. Specifically, the thesis focuses on the analysis, design and implementation of a low-power digital controller unit for ReADCs. In this study, the following two important reconfigurability issues are investigated: i) the detection mechanism for an adaptive implementation, and ii) the measure of power and area overheads that are introduced by the adaptive control modules. This thesis outlines four main achievements to address these issues. The first achievement is the development of the switching activity measurement (SWAM) method to detect different signal components based upon the observation of the output of an ADC. The second achievement is a proposed adaptive algorithm for ReADCs to dynamically adjust the resolution depending upon the variations in the input signal. The third achievement is an ASIC implementation of the adaptive control module for ReADCs. The module achieves low reconfiguration overheads in terms of area and power compared with the main analog part of a ReADC. The fourth achievement is the development of a low-power noise detection module using a conventional ADC for signal improvement. Taken together, the findings from this study demonstrate the potential use of switching activity information of an ADC to adaptively control the circuits, and simultaneously expanding the functionality of the ADC in electronic systems

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics
    • …
    corecore