15 research outputs found

    Low power digitally controlled oscillator for IoT applications

    Get PDF
    This work is focused on the design of a Low Power CMOS DCO for IEEE 802.11ah in IoT applications. The design methodology is based on the Unified current-control model (UICM), which is a physics-based model and enables an accurate all-region model of the operation of the device. Additionally, a transformer-based resonator has been used to solve the low-quality factor issue of integrated inductors. Two digitally controlled oscillators (DCO) have been implemented to show the advantages of utilizing a transformedbased resonator and the methodology based on the UICM model. These designs aim for the operation in low voltage supply (VDD) since VDD scaling is a trend in systems-onchip (SoCs), in which the circuitry is mostly digital. Despite the degradation caused by VDD scaling, new RF and analog circuits must deliver similar performance of the older CMOS nodes. The first DCO design was a low power LC-tank DCO, implemented in 40nm bulk-CMOS. The first design presented a DCO operating at 45% of the nominal VDD without compromise the performance. By reducing the VDD below the nominal value, this DCO reduces power consumption, which is a crucial feature for IoT circuits. The main contribution of this first DCO is the reduction of VDD scaling impact on the phase-noise do the DCO. The LC-based DCO operates from 1.8 to 1.86 GHz. At the maximum frequency and 0.395V VDD, the power consumption is a mere 380 W with a phase-noise of -119.3 dBc/Hz at 1 MHz. The circuit occupies an area of 0.46mm2 in 40 nm CMOS, mostly due to the inductor. The second DCO design was a low-power transformer-based DCO design, implemented in 28nm bulk-CMOS. This second design aims for the VDD reduction to below 0.3 V. Operating in a frequency range similar to the LC-based DCO, the transformer-based DCO operated with 0.280V VDD with a power consumption of 97 W. Meanwhile, the phase-noise was -101.95 dBc/Hz at 1 MHz. Even in the worst-case scenario (i.e., slow-slow and 85oC), this second DCO was able to operate at 0.330V VDD, consuming 126 W, while it keeps a similar phase-noise performance of the typical case. The core circuit occupies an area of 0.364 mm2.Este trabalho objetiva o projeto de um DCO de baixa potência em CMOS para aplicações de IoT e aderentes ao padrão IEEE 802.11ah. A metodologia de projeto é baseada no modelo de controle de corrente unificado (UICM), que é um modelo com embasamento físico que permite uma operação precisa em todas as regiões de operação do dispositivo. Adicionalmente, é utilizado um ressonador baseado em transformador visando solucionar os problemas provenientes do baixo fator de qualidade de indutores integrados. Para destacar as melhorias obtidas com o projeto do ressonador baseado em transformador e com a metodologia baseada no modelo UICM, dois projetos de DCO são realizados. Esses projetos visam a operação com baixa tensão de alimentação (VDD), uma vez que o escalonamento do VDD é uma tendência em sistemas em chip (SoCs), em que o circuito é majoritariamente digital. Independente da degradação causada pelo escalonamento de VDD, circuitos analógicos e de RF atuais devem oferecer desempenho semelhante ao alcançado em tecnologias CMOS mais antigas. O primeiro projeto foi um DCO de baixa potência com tanque LC, implementado em tecnologia bulk-CMOS de 40nm. O primeiro projeto apresentou uma operação a 45% do VDD nominal sem comprometer o desempenho. Ao reduzir o VDD abaixo do valor nominal, este DCO reduz o consumo de energia, que é uma característica crucial para circuitos IoT. A principal contribuição deste DCO é a redução do impacto do escalonamento do VDD no ruído de fase. O DCO com tanque LC opera de 1,8 a 1,86 GHz. Na frequência máxima e com VDD de apenas 0,395V, o consumo de energia é 380 W e o ruído de fase é -119,3 dBc/Hz a 1 MHz. O circuito ocupa uma área de 0.46mm2 em processo CMOS de 40 nm. O segundo projeto foi um DCO de baixa potência baseado em transformador, implementado em tecnologia bulk- CMOS de 28nm. Este projeto visa a redução de VDD abaixo de 0,3 V. Operando em uma faixa de frequência semelhante ao primeiro DCO, o DCO baseado em transformador opera com VDD de 0,280V e com consumo de potência de 97 W. O ruído de fase foi de -101,95 dBc/Hz a 1 MHz. Mesmo no pior caso de processo, este DCO opera a um VDD de 0,330V, consumindo 126 W, com o ruído de fase semelhante ao caso típico. O circuito ocupa uma área de 0.364mm2

    A 0.5GHz 0.35mW LDO-Powered Constant-Slope Phase Interpolator with 0.22% INL

    Get PDF
    Clock generators are an essential and critical building block of any communication link, whether it be wired or wireless, and they are increasingly critical given the push for lower I/O power and higher bandwidth in Systems-on-Chip (SoCs) for the Internet-of-Things (IoT). One recurrent issue with clock generators is multiple-phase generation, especially for low-power applications; several methods of phase generation have been proposed, one of which is phase interpolation. We propose a phase interpolator (PI) that employs the concept of constant-slope operation. Consequently, a low-power highly-linear operation is coupled with the wide dynamic range (i.e., phase wrapping) capabilities of a PI. Furthermore, the PI is powered by a low-dropout regulator (LDO) supporting fast transient operation. Implemented in 65-nm CMOS technology, it consumes 350μ W at a 1.2-V supply and a 0.5-GHz clock; it achieves energy efficiency 4× -15× lower than state-of-the-art (SoA) digital-to-time converters (DTCs) and an integral non-linearity (INL) of 2.5× -3.1× better than SoA PIs, striking a good balance between linearity and energy efficiency

    Techniques for Frequency Synthesizer-Based Transmitters.

    Full text link
    Internet of Things (IoT) devices are poised to be the largest market for the semiconductor industry. At the heart of a wireless IoT module is the radio and integral to any radio is the transmitter. Transmitters with low power consumption and small area are crucial to the ubiquity of IoT devices. The fairly simple modulation schemes used in IoT systems makes frequency synthesizer-based (also known as PLL-based) transmitters an ideal candidate for these devices. Because of the reduced number of analog blocks and the simple architecture, PLL-based transmitters lend themselves nicely to the highly integrated, low voltage nanometer digital CMOS processes of today. This thesis outlines techniques that not only reduce the power consumption and area, but also significantly improve the performance of PLL-based transmitters.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113385/1/mammad_1.pd

    Towards Very Large Scale Analog (VLSA): Synthesizable Frequency Generation Circuits.

    Full text link
    Driven by advancement in integrated circuit design and fabrication technologies, electronic systems have become ubiquitous. This has been enabled powerful digital design tools that continue to shrink the design cost, time-to-market, and the size of digital circuits. Similarly, the manufacturing cost has been constantly declining for the last four decades due to CMOS scaling. However, analog systems have struggled to keep up with the unprecedented scaling of digital circuits. Even today, the majority of the analog circuit blocks are custom designed, do not scale well, and require long design cycles. This thesis analyzes the factors responsible for the slow scaling of analog blocks, and presents a new design methodology that bridges the gap between traditional custom analog design and the modern digital design. The proposed methodology is utilized in implementation of the frequency generation circuits – traditionally considered analog systems. Prototypes covering two different applications were implemented. The first synthesized all-digital phase-locked loop was designed for 400-460 MHz MedRadio applications and was fabricated in a 65 nm CMOS process. The second prototype is an ultra-low power, near-threshold 187-500 kHz clock generator for energy harvesting/autonomous applications. Finally, a digitally-controlled oscillator frequency resolution enhancement technique is presented which allows reduction of quantization noise in ADPLLs without introducing spurs.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/109027/1/mufaisal_1.pd

    Energy-Efficient Wireless Connectivity and Wireless Charging For Internet-of-Things (IoT) Applications

    Full text link
    During the recent years, the Internet-of-Things (IoT) has been rapidly evolving. It is indeed the future of communication that has transformed Things of the real world into smarter devices. To date, the world has deployed billions of “smart” connected things. Predictions say there will be 10’s of billions of connected devices by 2025 and in our lifetime we will experience life with a trillion-node network. However, battery lifespan exhibits a critical barrier to scaling IoT devices. Replacing batteries on a trillion-sensor scale is a logistically prohibitive feat. Self-powered IoT devices seems to be the right direction to stand up to that challenge. The main objective of this thesis is to develop solutions to achieve energy-efficient wireless-connectivity and wireless-charging for IoT applications. In the first part of the thesis, I introduce ultra-low power radios that are compatible with the Bluetooth Low-Energy (BLE) standard. BLE is considered as the preeminent protocol for short-range communications that support transmission ranges up to 10’s of meters. Number of low power BLE transmitter (TX) and receiver (RX) architectures have been designed, fabricated and tested in different planar CMOS and FinFET technologies. The low power operation is achieved by combining low power techniques in both the network and physical layers, namely: backchannel communication, duty-cycling, open-loop transmission/reception, PLL-less architectures, and mixer-first architectures. Further novel techniques have been proposed to further reduce the power the consumption of the radio design, including: a fast startup time and low startup energy crystal oscillators, an antenna-chip co-design approach for quadrature generation in the RF path, an ultra-low power discrete-time differentiator-based Gaussian Frequency Shift Keying (GFSK) demodulation scheme, an oversampling GFSK modulation/demodulation scheme for open loop transmission/reception and packet synchronization, and a cell-based design approach that allows automation in the design of BLE digital architectures. The implemented BLE TXs transmit fully-compliant BLE advertising packet that can be received by commercial smartphone. In the second part of the thesis, I introduce passive nonlinear resonant circuits to achieve wide-band RF energy harvesting and robust wireless power transfer circuits. Nonlinear resonant circuits modeled by the Duffing nonlinear differential equation exhibit interesting hysteresis characteristics in their frequency and amplitude responses that are exploited in designing self-adaptive wireless charging systems. In the magnetic-resonance wireless power transfer scenario, coupled nonlinear resonators are proposed to maintain the power transfer level and efficiency over a range of coupling factors without active feedback control circuitry. Coupling factor depends on the transmission distance, lateral, and angular misalignments between the charging pad and the device. Therefore, nonlinear resonance extends the efficient charging zones of a wireless charger without the requirement for a precise alignment.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169842/1/omaratty_1.pd

    Efficient and Interference-Resilient Wireless Connectivity for IoT Applications

    Full text link
    With the coming of age of the Internet of Things (IoT), demand on ultra-low power (ULP) and low-cost radios will continue to boost tremendously. The Bluetooth-Low-energy (BLE) standard provides a low power solution to connect IoT nodes with mobile devices, however, the power of maintaining a connection with a reasonable latency remains the limiting factor in defining the lifetime of event-driven BLE devices. BLE radio power consumption is in the milliwatt range and can be duty cycled for average powers around 30μW, but at the expense of long latency. Furthermore, wireless transceivers traditionally perform local oscillator (LO) calibration using an external crystal oscillator (XTAL) that adds significant size and cost to a system. Removing the XTAL enables a true single-chip radio, but an alternate means for calibrating the LO is required. Innovations in both the system architecture and circuits implementation are essential for the design of truly ubiquitous receivers for IoT applications. This research presents two porotypes as back-channel BLE receivers, which have lower power consumption while still being robust in the presents of interference and able to receive back-channel message from BLE compliant transmitters. In addition, the first crystal-less transmitter with symmetric over-the-air clock recovery compliant with the BLE standard using a GFSK-Modulated BLE Packet is presented.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162942/1/abdulalg_1.pd

    Energy-Efficient Wireless Circuits and Systems for Internet of Things

    Full text link
    As the demand of ultra-low power (ULP) systems for internet of thing (IoT) applications has been increasing, large efforts on evolving a new computing class is actively ongoing. The evolution of the new computing class, however, faced challenges due to hard constraints on the RF systems. Significant efforts on reducing power of power-hungry wireless radios have been done. The ULP radios, however, are mostly not standard compliant which poses a challenge to wide spread adoption. Being compliant with the WiFi network protocol can maximize an ULP radio’s potential of utilization, however, this standard demands excessive power consumption of over 10mW, that is hardly compatible with in ULP systems even with heavy duty-cycling. Also, lots of efforts to minimize off-chip components in ULP IoT device have been done, however, still not enough for practical usage without a clean external reference, therefore, this limits scaling on cost and form-factor of the new computer class of IoT applications. This research is motivated by those challenges on the RF systems, and each work focuses on radio designs for IoT applications in various aspects. First, the research covers several endeavors for relieving energy constraints on RF systems by utilizing existing network protocols that eventually meets both low-active power, and widespread adoption. This includes novel approaches on 802.11 communication with articulate iterations on low-power RF systems. The research presents three prototypes as power-efficient WiFi wake-up receivers, which bridges the gap between industry standard radios and ULP IoT radios. The proposed WiFi wake-up receivers operate with low power consumption and remain compatible with the WiFi protocol by using back-channel communication. Back-channel communication embeds a signal into a WiFi compliant transmission changing the firmware in the access point, or more specifically just the data in the payload of the WiFi packet. With a specific sequence of data in the packet, the transmitter can output a signal that mimics a modulation that is more conducive for ULP receivers, such as OOK and FSK. In this work, low power mixer-first receivers, and the first fully integrated ultra-low voltage receiver are presented, that are compatible with WiFi through back-channel communication. Another main contribution of this work is in relieving the integration challenge of IoT devices by removing the need for external, or off-chip crystals and antennas. This enables a small form-factor on the order of mm3-scale, useful for medical research and ubiquitous sensing applications. A crystal-less small form factor fully integrated 60GHz transceiver with on-chip 12-channel frequency reference, and good peak gain dual-mode on-chip antenna is presented.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162975/1/jaeim_1.pd

    Ultra Low-Power Frequency Synthesizers for Duty Cycled IoT radios

    Get PDF
    Internet of Things (IoT), which is one of the main talking points in the electronics industry today, consists of a number of highly miniaturized sensors and actuators which sense the physical environment around us and communicate that information to a central information hub for further processing. This agglomeration of miniaturized sensors helps the system to be deployed in previously impossible arenas such as healthcare (Body Area Networks - BAN), industrial automation, real-time monitoring environmental parameters and so on; thereby greatly improving the quality of life. Since the IoT devices are usually untethered, their energy sources are limited (typically battery powered or energy scavenging) and hence have to consume very low power. Today's IoT systems employ radios that use communication protocols like Bluetooth Smart; which means that they communicate at data rates of a few hundred kb/s to a few Mb/s while consuming around a few mW of power. Even though the power dissipation of these radios have been decreasing steadily over the years, they seem to have reached a lower limit in the recent times. Hence, there is a need to explore other avenues to further reduce this dissipation so as to further improve the energy autonomy of the IoT node. Duty cycling has emerged as a promising alternative in this sense since it involves radios transmitting very short bursts of data at high rates and being asleep the rest of the time. In addition, high data rates proffer the added advantage of reducing network congestion which has become a major problem in IoT owing to the increase in the number of sensor nodes as well as the volume of data they send. But, as the average power (energy) dissipated decreases due to duty cycling, the energy overhead associated with the start-up phase of the radio becomes comparable with the former. Therefore, in order to take full advantage of duty cycling, the radio should be capable of being turned ON/OFF almost instantaneously. Furthermore, the radio of the future should also be able to support easy frequency hopping to improve the system efficiency from an interference point of view. In other words, in addition to high data rate capability, the next generation radios must also be highly agile and have a low energy overhead. All these factors viz. data rate, agility and overhead are mainly dependent on the radio's frequency synthesizer and therefore emphasis needs to be laid on developing new synthesizer architectures which are also amenable to technology scaling. This thesis deals with the evolution of one such all-digital frequency synthesizer; with each step dealing with one of the aforementioned issues. In order to reduce the energy overhead of the synthesizer, FBAR resonators (which are a class of MEMS resonators) are used as the frequency reference instead of a traditional quartz crystal. The FBAR resonators aid the design of fast-startup oscillators as opposed to the long latency associated with the start-up of the crystal oscillator. In addition, the frequency stability of the FBAR lends itself to open-loop architecture which can support very high data rates. Another advantage of the open-loop architecture is the frequency agility which aids easy channel switching for multi-hop architectures, as demonstrated in this thesis
    corecore