6 research outputs found

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Antenna Designs for 5G/IoT and Space Applications

    Get PDF
    This book is intended to shed some light on recent advances in antenna design for these new emerging applications and identify further research areas in this exciting field of communications technologies. Considering the specificity of the operational environment, e.g., huge distance, moving support (satellite), huge temperature drift, small dimension with respect to the distance, etc, antennas, are the fundamental device allowing to maintain a constant interoperability between ground station and satellite, or different satellites. High gain, stable (in temperature, and time) performances, long lifecycle are some of the requirements that necessitates special attention with respect to standard designs. The chapters of this book discuss various aspects of the above-mentioned list presenting the view of the authors. Some of the contributors are working strictly in the field (space), so they have a very targeted view on the subjects, while others with a more academic background, proposes futuristic solutions. We hope that interested reader, will find a fertile source of information, that combined with their interest/background will allow efficiently exploiting the combination of these two perspectives

    Antennas and Propagation

    Get PDF
    This Special Issue gathers topics of utmost interest in the field of antennas and propagation, such as: new directions and challenges in antenna design and propagation; innovative antenna technologies for space applications; metamaterial, metasurface and other periodic structures; antennas for 5G; electromagnetic field measurements and remote sensing applications

    Communication Platform Payload Definition (CPPD) study. Volume 2: Technical report

    Get PDF
    This is Volume 2 (Technical Report) of the Ford Aerospace & Communications Corporation Final Report for the Communication Platform Payload Definition (CPPD) Study program conducted for NASA Lewis Research Center under contract No. NAS3-24235. This report presents the results of the study effort leading to five potential platform payloads to service CONUS and WARC Region 2 traffic demand as projected to the year 2008. The report addresses establishing the data bases, developing service aggregation scenarios, selecting and developing 5 payload concepts, performing detailed definition of the 5 payloads, costing them, identifying critical technology, and finally comparing the payloads with each other and also with non-aggregated equivalent services

    Multi-frequency microwave energy harvesting receivers: theory and applications

    Get PDF
    Mención Internacional en el título de doctorEmissions across the electromagnetic spectrum are not only used for communications, but they can also be used for powering electronic devices. This resource has been made more and more abundant in the last years thanks to the recent deployment of 4G and 5G, and the popularization of broadband wireless networks such as WiFi, including traditional services such as TV and radio broadcasting. In order to take advantage of the energy (currently wasted), rectennas (a rectifier integrated with an antenna) are used. This thesis has the objective of studying these rectifying elements, to reduce or eliminate the use of batteries that are employed in millions of low-power devices and sensor networks planned for deployment in the near future. To do this, a self-supply system in situ is required. This could be achieved with photovoltaics or piezoelectrics, but they require the presence of light or vibration. However, the electromagnetic energy produced by mobile communications, TV base stations and radar is noticeable inside a large coverage area, 24 hours a day. This includes difficult access areas where it is nearly impossible to provide appropriate maintenance to replace batteries. As explained through the thesis, energy harvesting applications have a severe limitation on the available levels of power density to scavenge, constraining the RF-DC power conversion effciencies. Therefore, the amount of DC power to feed a sensor is limited and some techniques must be applied to improve the performance. This thesis proposes an alternative for improving the RF-DC power conversion efficiency based on the multiple-tone scenario (the electromagnetic spectrum). Previous studies have been published about an empirical improvement in the power efficiency when working with high Peak to Average Power Ratio (PAPR) multiple-tone signals, compared to a CW signal with the same average power, although the theoretical proof was not accurate enough. A mathematical model that predicts the expected DC current of the diode when excited with multiple tones is proposed along the thesis, having good agreement with simulations and measurements, demonstrating the good performance of the theoretical model. With this mathematical approach, convergence problems in simulation software can be avoided. This document comprises six chapters and it is organized as follows: In the first chapter a brief introduction on the evolution of wireless power transfer is presented, including all the different approaches that compose it, emphasizing the far-filed non-directional powering or harvesting, which is the topic of this thesis. In addition, an analysis of the state of the art is presented with the most signifficant values of conversion effciency, as well as the main characteristics of various designs. In the second chapter, the performance of the diode is explored theoretically. For very low incident power densities (those present in the environment), the diode works in a non-linear region, where a power effciency improvement is obtained when using high PAPR multiple-tone signal instead of a single tone with the same average power. This fact has been empirically tested but an accurate theoretical model has not been accomplished. Therefore, this chapter deals with this issue, showing a novel mathematical analysis of the diode operation in that region for multiple input tones, varying their relative amplitude and frequency. In Chapter 3, the theoretical analysis is compared with simulations and experiments for multiple input tones with a large resulting PAPR using three different rectifier circuits. To properly compare the results, it is necessary to use an accurate Spice diode model (including parasitics) and an appropriate measurement setup. Otherwise, results will differ due to an inadequate characterization of the non-linear device. This chapter addresses those issues. The analysis shows that the relative frequency and amplitude of multiple simultaneous signals impacts the amount of efficiency improvement. Once the recti er element is studied, Chapter 4 deals with the antenna design, which is part of the rectenna deployment. It is seen that different design criteria must be used when working with a WPT directive beaming application or a non-directive harvesting one, as happens in this thesis. The integration between the antenna and the recti er is analyzed, showing possible alternatives. Finally, a rectenna design is built and tested through indoor and outdoor measurements. An analysis of the electromagnetic spectrum is included to demonstrate the feasibility of the rectenna model. In Chapter 5 a wearable rectenna application is shown, with a broadband 2 to 5 GHz rectenna array, implemented on a cotton shirt. This application allows to collect enough energy to power energy-efficient devices. Different rectenna array sizes were tested at different power densities. The single element is a self-complementary tightly-coupled bow-tie. Simulations and measurements were performed over a phantom and over body tissues taking into account the electrical properties of the torso. The thickness of each layer was varied analyzing its influence in the antenna performance, to check what happens under different body compositions (people with more adipose tissue or on the contrary more brous). Finally, Chapter 6 collects the conclusions of the work shown in this thesis and ideas for future work. Some ideas are proposed about Chapter 2 to reduce the error of the mathematical approach when working in the non-linear region. Also, some possible improvements to the printed antenna of Chapter 5 are included such as adding a dual linear polarization.Las emisiones a lo largo de todo el espectro electromagnético no sólo se pueden utilizar para las comunicaciones, sino que también pueden emplearse para la alimentación de dispositivos electr onicos. Este recurso se ha hecho cada vez más abundante en los ultimos años gracias a los recientes despliegues en telefonía móvil de 4G y 5G y a la popularización de las redes inalámbricas de banda ancha (WiFi), sin olvidar las comunicaciones de difusión ya existentes como la radio o televisión. Para poder aprovechar este recurso (actualmente desaprovechado), se utilizan las llamadas rectenas, que son antenas con un elemento rectificador integrado. Esta tesis tiene por objetivo el estudio de estos elementos rectificadores, para desarrollar aplicaciones capaces de reducir o eliminar el uso de baterías en los millones de dispositivos y redes de sensores de bajo consumo existentes hoy día, mediante el autoabastecimiento de energía. Este proceso podría llevarse a cabo con paneles fotovoltaicos o sistemas piezoeléctricos, pero estos requieren de la presencia continua de la fuente que los origina (vibraciones, horas de sol). Sin embargo, la energía electromagnética producida por las estaciones base, de telefonía o televisión, está presente bajo su zona de cobertura las 24 horas del día, lo cual incluye zonas de difícil acceso, en las que es complicado el recambio o mantenimiento de las baterías. Además, estas emisiones tienen como principal limitación la baja densidad de potencia, obteniéndose valores de eficiencia de conversión RF-DC muy bajos. Esto conlleva que los valores de corriente DC para alimentar al sensor sean muy pequeños, de nA o uA, y por tanto, deben emplearse técnicas para la mejora del rendimiento. Esta tesis propone una alternativa para mejorar la eficiencia de conversión, basada en la probada mejora de eficiencia cuando se trabaja con señales con un Peak to Average Power Ratio (PAPR) grande. Esto se da en escenarios multitonales como puede ser el espectro electromagnético. Esta mejora no ha sido abordada teóricamente con resultados precisos en trabajos previos, por lo que en esta tesis se desarrolla un modelo matemático que predice la componente DC de la corriente del diodo, cuando se excita con múltiples tonos. Los resultados obtenidos han sido validados en el laboratorio, demostrándose la mejora en la eficiencia de conversión y el buen comportamiento del modelo teórico. De esta forma, se pueden agilizar los cálculos cuando no se tiene un software de simulación disponible, o cuando este arroja problemas de convergencia. Esta tesis consta de seis capítulos y está organizada de la siguiente manera: En el primer capítulo se expone una breve introducción sobre la evolución de la transferencia inalámbrica de potencia y sobre las diferentes tecnologías que la componen, haciéndose hincapié en la transferencia de potencia no directiva en campo lejano, puesto que se corresponde a la recolección de la energía electromagnética ambiental. Además, se incluye un análisis del estado del arte con los valores más significativos de eficiencia de conversión, así como las principales características de varios diseños (como por ejemplo la potencia o las bandas de trabajo empleadas). En el segundo capítulo se explora el comportamiento del diodo desde el punto de vista matemático. Bajo densidades de potencia pequeñas, como las presentes en este entorno, el diodo opera en su región no lineal, produciendo un incremento de eficiencia cuando se trabaja con señales con gran PAPR, respecto a un tono con la misma potencia media. Este hecho ha sido probado empíricamente pero ningún modelo teórico preciso ha sido realizado. En este capítulo se incluye un novedoso análisis matemático del funcionamiento del diodo en esa región para múltiples tonos de entrada, variando la amplitud y frecuencia de estos. En el capítulo 3 se muestra la comparativa entre el modelo teórico, las simulaciones y las medidas en el laboratorio, usando múltiples tonos entrada en tres rectificadores. Para comparar adecuadamente todos los resultados, es necesario utilizar un modelo Spice del diodo preciso (incluyendo los parásitos del encapsulado) y un correcto setup de medida. De lo contrario, existiría un error en los resultados debido a una caracterización inadecuada del dispositivo no lineal. Este capítulo aborda esos problemas. El análisis muestra que la frecuencia y amplitud relativa de múltiples señales simultáneas afectan a la eficiencia. Una vez estudiado el rectificador, el capítulo 4 de la tesis aborda el diseño de la antena. Para ello, se analizan los diferentes criterios de diseño que deben emplearse cuando se trabaja con una transmisión de potencia inalámbrica directiva o no directiva, como es en caso bajo estudio, así como las técnicas de integración entre rectificador y antena. Para concluir, se diseña y mide una rectena tanto en laboratorio como en espacio abierto, usando la energía ambiental, previamente caracterizada con medidas espectrales. Los resultados demuestran que es posible recolectar y rectificar la energía ambiental. En el capítulo 5 se muestra una posible aplicación al integrarse una rectena impresa en una camiseta para alimentar sensores biológicos o \wearable". Se trata de un diseño de banda ancha que opera en el rango de 2 a 5 GHz, que permite recolectar suficiente energía para alimentar sensores de bajo consumo. Se analiza el funcionamiento de dos tamaños distintos de arrays con diferentes densidades de potencia. Al ser un diseño \wearable", la aplicación ha sido diseñada y probada sobre un maniquí y un cuerpo humano, analizándose el comportamiento de la antena impresa sobre distintas composiciones corporales (personas con más tejido adiposo o por el contrario más fibrosas). Finalmente, el capítulo 6 recopila las conclusiones del trabajo que se muestra en esta tesis e ideas para trabajos futuros, proponiéndose desde enfoques para reducir más el error en la aproximación del comportamiento no lineal del diodo en el capítulo 2, a posibles mejoras en la antena impresa del capítulo 5, incluyendo la doble polarización lineal.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Carlos Martín Pascual.- Secretario: Simon Jacques Hemour.- Vocal: Nuno Miguel G. Borges De Carvalh
    corecore