112 research outputs found

    IP-Based Mobility Management and Handover Latency Measurement in heterogeneous environments

    Get PDF
    One serious concern in the ubiquitous networks is the seamless vertical handover management between different wireless technologies. To meet this challenge, many standardization organizations proposed different protocols at different layers of the protocol stack. The Internet Engineering Task Force (IETF) has different groups working on mobility at IP level in order to enhance mobile IPv4 and mobile IPv6 with different variants: HMIPv6 (Hierarchical Mobile IPv6), FMIPv6 (Fast Mobile IPv6) and PMIPv6 (Proxy Mobile IPv6) for seamless handover. Moreover, the IEEE 802.21 standard provides another framework for seamless handover. The 3GPP standard provides the Access Network and Selection Function (ANDSF) to support seamless handover between 3GPP – non 3GPP networks like Wi-Fi, considered as untrusted, and WIMAX considered as trusted networks. In this paper, we present an in-depth analysis of seamless vertical handover protocols and a handover latency comparison of the main mobility management approaches in the literature. The comparison shows the advantages and drawbacks of every mechanism in order to facilitate the adoption of the convenient one for vertical handover within Next Generation Network (NGN) environments. Keywords: Seamless vertical handover, mobility management protocols, IEEE 802.21 MIH, handover latenc

    Mobile IP movement detection optimisations in 802.11 wireless LANs

    Get PDF
    The IEEE 802.11 standard was developed to support the establishment of highly flexible wireless local area networks (wireless LANs). However, when an 802.11 mobile node moves from a wireless LAN on one IP network to a wireless LAN on a different network, an IP layer handoff occurs. During the handoff, the mobile node's IP settings must be updated in order to re-establish its IP connectivity at the new point of attachment. The Mobile IP protocol allows a mobile node to perform an IP handoff without breaking its active upper-layer sessions. Unfortunately, these handoffs introduce large latencies into a mobile node's traffic, during which packets are lost. As a result, the mobile node's upper-layer sessions and applications suffer significant disruptions due to this handoff latency. One of the main components of a Mobile IP handoff is the movement detection process, whereby a mobile node senses that it is attached to a new IP network. This procedure contributes significantly to the total Mobile IP handover latency and resulting disruption. This study investigates different mechanisms that aim to lower movement detection delays and thereby improve Mobile IP performance. These mechanisms are considered specifically within the context of 802.11 wireless LANs. In general, a mobile node detects attachment to a new network when a periodic IP level broadcast (advertisement) is received from that network. It will be shown that the elimination of this dependence on periodic advertisements, and the reliance instead on external information from the 802.11 link layer, results in both faster and more efficient movement detection. Furthermore, a hybrid system is proposed that incorporates several techniques to ensure that movement detection performs reliably within a variety of different network configurations. An evaluation framework is designed and implemented that supports the assessment of a wide range of movement detection mechanisms. This test bed allows Mobile IP handoffs to be analysed in detail, with specific focus on the movement detection process. The performance of several movement detection optimisations is compared using handoff latency and packet loss as metrics. The evaluation framework also supports real-time Voice over IP (VoIP) traffic. This is used to ascertain the effects that different movement detection techniques have on the output voice quality. These evaluations not only provide a quantitative performance analysis of these movement detection mechanisms, but also a qualitative assessment based on a VoIP application

    Virtual Mobility Domains - A Mobility Architecture for the Future Internet

    Get PDF
    The advances in hardware and wireless technologies have made mobile communication devices affordable by a vast user community. With the advent of rich multimedia and social networking content, an influx of myriads of applications, and Internet supported services, there is an increasing user demand for the Internet connectivity anywhere and anytime. Mobility management is thus a crucial requirement for the Internet today. This work targets novel mobility management techniques, designed to work with the Floating Cloud Tiered (FCT) internetworking model, proposed for a future Internet. We derive the FCT internetworking model from the tiered structure existing among Internet Service Provider (ISP) networks, to define their business and peering relationships. In our novel mobility management scheme, we define Virtual Mobility Domains (VMDs) of various scopes, that can support both intra and inter-domain roaming using a single address for a mobile node. The scheme is network based and hence imposes no operational load on the mobile node. This scheme is the first of its kind, by leveraging the tiered structure and its hierarchical properties, the collaborative network-based mobility management mechanism, and the inheritance information in the tiered addresses to route packets. The contributions of this PhD thesis can be summarized as follows: · We contribute to the literature with a comprehensive analysis of the future Internet architectures and mobility protocols over the period of 2002-2012, in light of their identity and handoff management schemes. We present a qualitative evaluation of current and future schemes on a unified platform. · We design and implement a novel user-centric future Internet mobility architecture called Virtual Mobility Domain. VMD proposes a seamless, network-based, unique collaborative mobility management within/across ASes and ISPs in the FCT Internetworking model. The analytical and simulation-based handoff performance analysis of the VMD architecture in comparison with the IPv6-based mobility protocols presents the considerable performance improvements achieved by the VMD architecture. · We present a novel and user-centric handoff cost framework to analyze handoff performance of different mobility schemes. The framework helps to examine the impacts of registration costs, signaling overhead, and data loss for Internet connected mobile users employing a unified cost metric. We analyze the effect of each parameter in the handoff cost framework on the handoff cost components. We also compare the handoff performance of IPv6-based mobility protocols to the VMD. · We present a handoff cost optimization problem and analysis of its characteristics. We consider a mobility user as the primary focus of our study. We then identify the suitable mathematical methods that can be leveraged to solve the problem. We model the handoff cost problem in an optimization tool. We also conduct a mobility study - best of our knowledge, first of its kind - on providing a guide for finding the number of handoffs in a typical VMD for any given user\u27s mobility model. Plugging the output of mobility study, we then conduct a numerical analysis to find out optimum VMD for a given user mobility model and check if the theoretical inferences are in agreement with the output of the optimization tool

    Context transfer support for mobility management in all-IP networks.

    Get PDF
    This thesis is a description of the research undertaken in the course of the PhD and evolves around a context transfer protocol which aims to complement and support mobility management in next generation mobile networks. Based on the literature review, it was identified that there is more to mobility management than handover management and the successful change of routing paths. Supportive mechanisms like fast handover, candidate access router discovery and context transfer can significantly contribute towards achieving seamless handover which is especially important in the case of real time services. The work focused on context transfer motivated by the fact that it could offer great benefits to session re-establishment during the handover operation of a mobile user and preliminary testbed observations illustrated the need for achieving this. Context transfer aims to minimize the impact of certain transport, routing, security-related services on the handover performance. When a mobile node (MN) moves to a new subnet it needs to continue such services that have already been established at the previous subnet. Examples of such services include AAA profile, IPsec state, header compression, QoS policy etc. Re-establishing these services at the new subnet will require a considerable amount of time for the protocol exchanges and as a result time- sensitive real-time traffic will suffer during this time. By transferring state to the new domain candidate services will be quickly re-established. This would also contribute to the seamless operation of application streams and could reduce susceptibility to errors. Furthermore, re-initiation to and from the mobile node will be avoided hence wireless bandwidth efficiency will be conserved. In this research an extension to mobility protocols was proposed for supporting state forwarding capabilities. The idea of forwarding states was also explored for remotely reconfiguring middleboxes to avoid any interruption of a mobile users' sessions or services. Finally a context transfer module was proposed to facilitate the integration of such a mechanism in next generation architectures. The proposals were evaluated analytically, via simulations or via testbed implementation depending on the scenario investigated. The results demonstrated that the proposed solutions can minimize the impact of security services like authentication, authorization and firewalls on a mobile user's multimedia sessions and thus improving the overall handover performance

    Mobility management in IP-Based Networks

    Get PDF
    Mobile communication networks experience a tremendous development clearly evident from the wide variety of new applications way beyond classical phone services. The tremendous success of the Internet along with the demand for always-on connectivity has triggered the development of All-IP mobile communication networks. Deploying these networks requires, however, overcoming many challenges. One of the main challenges is how to manage the mobility between cells connecting through an IP core in a way that satisfies real-time requirements. This challenge is the focus of this dissertation. This dissertation delivers an in-depth analysis of the mobility management issue in IP-based mobile communication networks. The advantages and disadvantages of various concepts for mobility management in different layers of the TCP/IP protocol stack are investigated. In addition, a classification and brief description of well-known mobility approaches for each layer are provided. The analysis concludes that network layer mobility management solutions seem to be best suited to satisfy the requirements of future All-IP networks. The dissertation, therefore, provides a comprehensive review of network layer mobility management protocols along with a discussion of their pros and cons. Analyses of previous work in this area show that the proposed techniques attempt to improve the performance by making constraints either on access networks (e.g. requiring a hierarchical topology, introducing of intermediate nodes, etc.) or mobile terminals (e.g. undertaking many measurements, location tracking, etc.). Therefore, a new technique is required that completes handoffs quickly without affecting the end-to-end performance of ongoing applications. In addition, it should place restrictions neither on access networks nor on mobiles. To meet these requirements, a new solution named Mobile IP Fast Authentication protocol (MIFA) is proposed. MIFA provides seamless mobility and advances the state of the art. It utilizes the fact that mobiles movements are limited to a small set of neighboring subnets. Thus, contacting these neighbors and providing them in advance with sufficient data related to the mobiles enable them to fast re-authenticate the mobiles after the handoff. The dissertation specifies the proposal for both IPv4 and IPv6. The specification of MIFA considers including many error recovery mechanisms to cover the most likely failures. Security considerations are studied carefully as well. MIFA does not make any restrictions on the network topology. It makes use of layer 2 information to optimize the performance and works well even if such information is not available.In order to analyze our new proposal in comparison to a wide range of well-known mobility management protocols, this dissertation proposes a generic mathematical model that supports the evaluation of figures such as average handoff latency, average number of dropped packets, location update cost and packet delivery cost. The generic model considers dropped control messages and takes different network topologies and mobility scenarios into account. This dissertation also validates the generic mathematical model by comparing its results to simulation results as well as results of real testbeds under the same assumptions. The validation proves that the generic model delivers an accurate evaluation of the performance in low-loaded networks. The accuracy of the model remains acceptable even under high loads. The validation also shows that simulation results lie in a range of 23 %, while results of real testbeds lie in a range of 30 % of the generic model?s results. To simplify the analysis using the generic mathematical model, 4 new tools are developed in the scope of this work. They automate the parameterization of mobility protocols, network topologies and mobility scenarios. This dissertation also evaluates the new proposal in comparison to well-known approaches (e.g. Mobile IP, Handoff-Aware Wireless Access Internet Infrastructure (HAWAII), etc.) by means of the generic mathematical model as well as simulation studies modeled in the Network Simulator 2. The evaluation shows that MIFA is a very fast protocol. It outperforms all studied protocols with respect to the handoff latency and number of dropped packets per handoff. MIFA is suitable for low as well as high speeds. Moreover, there is no significant impact of the network topology on its performance. A main advantage of MIFA is its robustness against the dropping of control messages. It remains able to achieve seamless handoffs even if a dropping occurs. The performance improvement is achieved, however, at the cost of introducing new control messages mainly to distribute data concerning mobile terminals to neighbor subnets. This results in more location update cost than that resulting from the other mobility management protocols studied. Due to excluding any constraints on the network topology, MIFA generates the same packet delivery cost as Mobile IP and less than other protocols.An additional focus of this dissertation is the development of an adaptive eLearning environment that personalizes eLearning contents conveying the topics of this dissertation depending on users? characteristics. The goal is to allow researchers to quickly become involved in research on mobility management, while learners such as students are able to gain information on the topics without excess detail. Analyses of existing eLearning environments show a lack of adaptivity support. Existing environments focus mainly on adapting either the navigation or the presentation of contents depending on one or more selected users? characteristics. There is no environment that supports both simultaneously. In addition, many user characteristics are disregarded during the adaptivity process. Thus, there is a need to develop a new adaptive eLearning environment able to eliminate these drawbacks. This dissertation, therefore, designs a new Metadata-driven Adaptive eLearning Environment (MAeLE). MAeLE generates personalized eLearning courses along with building an adequate navigation at run-time. Adaptivity depends mainly on providing contents with their describing metadata, which are stored in a separate database, thus enabling reusing of eLearning contents. The relation between the metadata that describe contents and those describing learners are defined accurately, which enables a dynamic building of personalized courses at run-time. A prototype for MAeLE is provided in this dissertation as well

    QoS provisioning and mobility management for IP-based wireless LAN

    Get PDF
    Today two major technological forces drive the telecommunication era: the wireless cellular systems and the Internet. As these forces converge, the demand for new services, increasing bandwidth and ubiquitous connectivity continuously grows. The next-generation mobile systems will be based solely or in a large extent, on the Internet Protocol (IP). This thesis begins by addressing the problems and challenges faced in a multimedia, IP-based Wireless LAN environment. The ETSI HiperLAN/2 system has been mainly selected as the test wireless network for our theoretical and simulation experiments. Apart from the simulations, measurements have been taken from real life test scenarios, where the IEEE 802.11 system was used (UniS Test-bed). Furthermore, a brief overview of the All-IP network infrastructure is presented. An extension to the conventional wireless (cellular) architecture, which takes advantage of the IP network characteristics, is considered. Some of the trends driving the 3G and WLANs developments are explored, while the provision of quality of service on the latter for real-time and non-real-time multimedia services is investigated, simulated and evaluated. Finally, an efficient and catholic Q0S framework is proposed. At the same time, the multimedia services should be offered in a seamless and uninterrupted manner to users who access the all-IP infrastructure via a WLAN, meeting the demands of both enterprise and public environments anywhere and anytime. Thus providing support for mobile communications not only in terms of terminal mobility, as is currently the case, but also for session, service and personal mobility. Furthermore, this mobility should be available over heterogeneous networks, such as WLANs, IJMTS, as well as fixed networks. Therefore, this work investigates issues such as, multilayer and multi-protocol (SIP-Mobile IP-Cellular IP) mobility management in wireless LAN and 3G domains. Several local and global mobility protocols and architectures have been tested and evaluated and a complete mobility management framework is proposed. Moreover, integration of simple yet efficient authentication, accounting and authorisation mechanisms with the multimedia service architecture is an important issue of IP-based WLANs. Without such integration providers will not have the necessary means to control their provided services and make revenue from the users. The proposed AAA architecture should support a robust AAA infrastructure providing secure, fast and seamless access granting to multimedia services. On the other hand, a user wishing a service from the All-IP WLAN infrastructure needs to be authenticated twice, once to get access to the network and the other one should be granted for the required service. Hence, we provide insights into these issues by simulating and evaluating pre-authentication techniques and other network authentication scenarios based on the wellknown IEEE 802.lx protocol for multimedia IP-based WLANs.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Mobility management across converged IP-based heterogeneous access networks

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 8/2/2010.In order to satisfy customer demand for a high performance “global” mobility service, network operators (ISPs, carriers, mobile operators, etc.) are facing the need to evolve to a converged “all-IP” centric heterogeneous access infrastructure. However, the integration of such heterogeneous access networks (e.g. 802.11, 802.16e, UMTS etc) brings major mobility issues. This thesis tackles issues plaguing existing mobility management solutions in converged IP-based heterogeneous networks. In order to do so, the thesis firstly proposes a cross-layer mechanism using the upcoming IEEE802.21 MIH services to make intelligent and optimized handovers. In this respect, FMIPv6 is integrated with the IEEE802.21 mechanism to provide seamless mobility during the overall handover process. The proposed solution is then applied in a simulated vehicular environment to optimize the NEMO handover process. It is shown through analysis and simulations of the signalling process that the overall expected handover (both L2 and L3) latency in FMIPv6 can be reduced by the proposed mechanism by 69%. Secondly, it is expected that the operator of a Next Generation Network will provide mobility as a service that will generate significant revenues. As a result, dynamic service bootstrapping and authorization mechanisms must be in place to efficiently deploy a mobility service (without static provisioning), which will allow only legitimate users to access the service. A GNU Linux based test-bed has been implemented to demonstrate this. The experiments presented show the handover performance of the secured FMIPv6 over the implemented test-bed compared to plain FMIPv6 and MIPv6 by providing quantitative measurements and results on the quality of experience perceived by the users of IPv6 multimedia applications. The results show the inclusion of the additional signalling of the proposed architecture for the purpose of authorization and bootstrapping (i.e. key distribution using HOKEY) has no adverse effect on the overall handover process. Also, using a formal security analysis tool, it is shown that the proposed mechanism is safe/secure from the induced security threats. Lastly, a novel IEEE802.21 assisted EAP based re-authentication scheme over a service authorization and bootstrapping framework is presented. AAA based authentication mechanisms like EAP incur signalling overheads due to large RTTs. As a result, overall handover latency also increases. Therefore, a fast re-authentication scheme is presented which utilizes IEEE802.21 MIH services to minimize the EAP authentication process delays and as a result reduce the overall handover latency. Analysis of the signalling process based on analytical results shows that the overall handover latency for mobility protocols will be approximately reduced by 70% by the proposed scheme

    MOBILITY SUPPORT ARCHITECTURES FOR NEXT-GENERATION WIRELESS NETWORKS

    Get PDF
    With the convergence of the wireless networks and the Internet and the booming demand for multimedia applications, the next-generation (beyond the third generation, or B3G) wireless systems are expected to be all IP-based and provide real-time and non-real-time mobile services anywhere and anytime. Powerful and efficient mobility support is thus the key enabler to fulfil such an attractive vision by supporting various mobility scenarios. This thesis contributes to this interesting while challenging topic. After a literature review on mobility support architectures and protocols, the thesis starts presenting our contributions with a generic multi-layer mobility support framework, which provides a general approach to meet the challenges of handling comprehensive mobility issues. The cross-layer design methodology is introduced to coordinate the protocol layers for optimised system design. Particularly, a flexible and efficient cross-layer signalling scheme is proposed for interlayer interactions. The proposed generic framework is then narrowed down with several fundamental building blocks identified to be focused on as follows. As widely adopted, we assume that the IP-based access networks are organised into administrative domains, which are inter-connected through a global IP-based wired core network. For a mobile user who roams from one domain to another, macro (inter-domain) mobility management should be in place for global location tracking and effective handoff support for both real-time and non-real-lime applications. Mobile IP (MIP) and the Session Initiation Protocol (SIP) are being adopted as the two dominant standard-based macro-mobility architectures, each of which has mobility entities and messages in its own right. The work explores the joint optimisations and interactions of MIP and SIP when utilising the complementary power of both protocols. Two distinctive integrated MIP-SIP architectures are designed and evaluated, compared with their hybrid alternatives and other approaches. The overall analytical and simulation results shown significant performance improvements in terms of cost-efficiency, among other metrics. Subsequently, for the micro (intra-domain) mobility scenario where a mobile user moves across IP subnets within a domain, a micro mobility management architecture is needed to support fast handoffs and constrain signalling messaging loads incurred by intra-domain movements within the domain. The Hierarchical MIPv6 (HMIPv6) and the Fast Handovers for MIPv6 (FMIPv6) protocols are selected to fulfil the design requirements. The work proposes enhancements to these protocols and combines them in an optimised way. resulting in notably improved performances in contrast to a number of alternative approaches
    corecore