2,045 research outputs found

    Medical image computing and computer-aided medical interventions applied to soft tissues. Work in progress in urology

    Full text link
    Until recently, Computer-Aided Medical Interventions (CAMI) and Medical Robotics have focused on rigid and non deformable anatomical structures. Nowadays, special attention is paid to soft tissues, raising complex issues due to their mobility and deformation. Mini-invasive digestive surgery was probably one of the first fields where soft tissues were handled through the development of simulators, tracking of anatomical structures and specific assistance robots. However, other clinical domains, for instance urology, are concerned. Indeed, laparoscopic surgery, new tumour destruction techniques (e.g. HIFU, radiofrequency, or cryoablation), increasingly early detection of cancer, and use of interventional and diagnostic imaging modalities, recently opened new challenges to the urologist and scientists involved in CAMI. This resulted in the last five years in a very significant increase of research and developments of computer-aided urology systems. In this paper, we propose a description of the main problems related to computer-aided diagnostic and therapy of soft tissues and give a survey of the different types of assistance offered to the urologist: robotization, image fusion, surgical navigation. Both research projects and operational industrial systems are discussed

    Head and neck target delineation using a novel PET automatic segmentation algorithm

    Get PDF
    Purpose To evaluate the feasibility and impact of using a novel advanced PET auto-segmentation method in Head and Neck (H&N) radiotherapy treatment (RT) planning. Methods ATLAAS, Automatic decision Tree-based Learning Algorithm for Advanced Segmentation, previously developed and validated on pre-clinical data, was applied to 18F-FDG-PET/CT scans of 20 H&N patients undergoing Intensity Modulated Radiation Therapy. Primary Gross Tumour Volumes (GTVs) manually delineated on CT/MRI scans (GTVpCT/MRI), together with ATLAAS-generated contours (GTVpATLAAS) were used to derive the RT planning GTV (GTVpfinal). ATLAAS outlines were compared to CT/MRI and final GTVs qualitatively and quantitatively using a conformity metric. Results The ATLAAS contours were found to be reliable and useful. The volume of GTVpATLAAS was smaller than GTVpCT/MRI in 70% of the cases, with an average conformity index of 0.70. The information provided by ATLAAS was used to grow the GTVpCT/MRI in 10 cases (up to 10.6 mL) and to shrink the GTVpCT/MRI in 7 cases (up to 12.3 mL). ATLAAS provided complementary information to CT/MRI and GTVpATLAAS contributed to up to 33% of the final GTV volume across the patient cohort. Conclusions ATLAAS can deliver operator independent PET segmentation to augment clinical outlining using CT and MRI and could have utility in future clinical studies

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Evaluation and Implementation of Otsu and Active Contour Segmentation in Contrast-Enhanced Cardiac CT Images

    Get PDF
    The CT cardiac acquisition process is usually conducted by using an additional image with contrast medium that is injected inside the body and reconstructed by a radiologist using an integrated CT Scan software with the aim to find the morphology and volume dimension of the heart and coronary arteries. In fact, the data obtained from the hospital are raw data without segmented contour from a radiologist. For the purpose of automation, dataset is needed to be used as input data for further program development. This study is focused on the evaluation of the segmentation results of CT cardiac images using Otsu threshold and active contour algorithm with the aim to make a dataset for the heart volume quantification that can be used interactively as an alternative to integrated CT scan software. 2D contrast enhanced cardiac CT from 6 patients using image processing techniques was run on Matlab software. Of the 689 slices that was used, as many as (73.75 ± 19.41)%of CT cardiac slices have been segmented properly, (19.15 ± 19.61)%of the slices that were segmented included the spine bone, (1.36 ± 0.98)%of the slices did not include all region of the heart, (16.58 ± 15.26)%of the slices included other organs with the consistency from the measurement proven from inter-observer variability to produce r = 0,9941.The result is due to the geometry influence from the diameter of the patient’s body thickness that tends to be thin

    Imaging Biomarkers for Carotid Artery Atherosclerosis

    Get PDF

    Synchrotron Radiation Micro-CT Imaging of Bone Tissue

    Get PDF
    International audienc
    • …
    corecore