49,655 research outputs found

    Interaction design issues for car navigation systems

    Get PDF
    We describe a study on the interaction design of in-car navigation systems. It focused on a commercial product. Critical incident analysis was performed based on natural use of the system by a usability analyst. A cognitive walkthrough was then performed based on actual scenarios from the natural use. This is a non-classic application of cognitive walkthrough. It allowed anecdotal critical incidents to be theoretically grounded. We draw conclusions about the interaction design of car navigation systems

    VANET Applications: Hot Use Cases

    Get PDF
    Current challenges of car manufacturers are to make roads safe, to achieve free flowing traffic with few congestions, and to reduce pollution by an effective fuel use. To reach these goals, many improvements are performed in-car, but more and more approaches rely on connected cars with communication capabilities between cars, with an infrastructure, or with IoT devices. Monitoring and coordinating vehicles allow then to compute intelligent ways of transportation. Connected cars have introduced a new way of thinking cars - not only as a mean for a driver to go from A to B, but as smart cars - a user extension like the smartphone today. In this report, we introduce concepts and specific vocabulary in order to classify current innovations or ideas on the emerging topic of smart car. We present a graphical categorization showing this evolution in function of the societal evolution. Different perspectives are adopted: a vehicle-centric view, a vehicle-network view, and a user-centric view; described by simple and complex use-cases and illustrated by a list of emerging and current projects from the academic and industrial worlds. We identified an empty space in innovation between the user and his car: paradoxically even if they are both in interaction, they are separated through different application uses. Future challenge is to interlace social concerns of the user within an intelligent and efficient driving

    Using remote vision: The effects of video image frame rate on visual object recognition performance

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.The process of using remote vision was simulated in order to determine the effects of video image frame rate on the performance in visual recognition of stationary environmental hazards in the dynamic video footage of the pedestrian travel environment. The recognition performance was assessed against two different video image frame rate variations: 25 and 2 fps. The assessment included a range of objective and subjective criteria. The obtained results show that the effects of the frame rate variations on the performance are statistically insignificant. This paper belongs to the process of development of a novel system for navigation of visually impaired pedestrians. The navigation system includes a remote vision facility, and the visual recognition of the environmental hazards by the sighted human guide is a basic activity in aiding the visually impaired user of the system in mobility

    ’Eyes free’ in-car assistance: parent and child passenger collaboration during phone calls

    Get PDF
    This paper examines routine family car journeys, looking specifically at how passengers assist during a mobile telephone call while the drivers address the competing demands of handling the vehicle, interacting with various artefacts and controls in the cabin, and engage in co-located and remote conversations while navigating through busy city roads. Based on an analysis of video fragments, we see how drivers and child passengers form their conversations and requests around the call so as to be meaningful and paced to the demands, knowledge and abilities of their cooccupants, and how the conditions of the road and emergent traffic are oriented to and negotiated in the context of the social interaction that they exist alongside. The study provides implications for the design of car-based collaborative media and considers how hands- and eyesfree natural interfaces could be tailored to the complexity of activities in the car and on the road

    Ambient Gestures

    No full text
    We present Ambient Gestures, a novel gesture-based system designed to support ubiquitous ‘in the environment’ interactions with everyday computing technology. Hand gestures and audio feedback allow users to control computer applications without reliance on a graphical user interface, and without having to switch from the context of a non-computer task to the context of the computer. The Ambient Gestures system is composed of a vision recognition software application, a set of gestures to be processed by a scripting application and a navigation and selection application that is controlled by the gestures. This system allows us to explore gestures as the primary means of interaction within a multimodal, multimedia environment. In this paper we describe the Ambient Gestures system, define the gestures and the interactions that can be achieved in this environment and present a formative study of the system. We conclude with a discussion of our findings and future applications of Ambient Gestures in ubiquitous computing

    The Global Positioning System: Global Developments and Opportunities

    Get PDF
    International Relations/Trade,

    Studying the effects of in-vehicle information systems on driver visual behaviour – implications for design

    Get PDF
    In-vehicle information systems (IVIS) are a common feature in modern vehicles. The interaction of drivers with IVIS when driving must be considered to minimise distraction whilst maintaining the benefits provided. This research investigates the glance behaviours of drivers, assessed from video data, when using two functions – a personal navigation device (study 1) and a green driving advisory device (study 2). The main focus was to establish the number of glances of 2 seconds or more to the IVIS and relate this to driver safety (as stipulated in new guidelines for use of IVIS proposed by NHTSA). In study 1, the percentage of eyes- off-road time for drivers was much greater in the experimental (with device) condition compared to the baseline condition (14.3% compared to 6.7%) but, whilst glances to the personal navigation device accounted for the majority of the increase, there were very few which exceeded 2 seconds. Drivers in study 2 spent on average 4.3% of their time looking at the system, at an average of 0.43 seconds per glance; no glances exceeded 2 seconds. The research showed that ordinary use of IVIS (excluding manual interaction) does not lead to driver visual distraction and therefore the impact on safety is minimal. The results of the study have important design implications for future in-vehicle information systems
    • 

    corecore