4,603 research outputs found

    Physiologic compliance in engineered small-diameter arterial constructs based on an elastomeric substrate.

    Get PDF
    Compliance mismatch is a significant challenge to long-term patency in small-diameter bypass grafts because it causes intimal hyperplasia and ultimately graft occlusion. Current engineered grafts are typically stiff with high burst pressure but low compliance and low elastin expression. We postulated that engineering small arteries on elastomeric scaffolds under dynamic mechanical stimulation would result in strong and compliant arterial constructs. This study compares properties of engineered arterial constructs based on biodegradable polyester scaffolds composed of either rigid poly(lactide-co-glycolide) (PLGA) or elastomeric poly(glycerol sebacate) (PGS). Adult baboon arterial smooth muscle cells (SMCs) were cultured in vitro for 10 days in tubular, porous scaffolds. Scaffolds were significantly stronger after culture regardless of material, but the elastic modulus of PLGA constructs was an order of magnitude greater than that of porcine carotid arteries and PGS constructs. Deformation was elastic in PGS constructs and carotid arteries but plastic in PLGA constructs. Compliance of arteries and PGS constructs were equivalent at pressures tested. Altering scaffold material from PLGA to PGS significantly decreased collagen content and significantly increased insoluble elastin content in constructs without affecting soluble elastin concentration in the culture medium. PLGA constructs contained no appreciable insoluble elastin. This research demonstrates that: (1) substrate stiffness directly affects in vitro tissue development and mechanical properties; (2) rigid materials likely inhibit elastin incorporation into the extracellular matrix of engineered arterial tissues; and (3) grafts with physiologic compliance and significant elastin content can be engineered in vitro after only days of cell culture

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 183

    Get PDF
    This bibliography lists 273 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1978

    Chemical Power for Microscopic Robots in Capillaries

    Full text link
    The power available to microscopic robots (nanorobots) that oxidize bloodstream glucose while aggregated in circumferential rings on capillary walls is evaluated with a numerical model using axial symmetry and time-averaged release of oxygen from passing red blood cells. Robots about one micron in size can produce up to several tens of picowatts, in steady-state, if they fully use oxygen reaching their surface from the blood plasma. Robots with pumps and tanks for onboard oxygen storage could collect oxygen to support burst power demands two to three orders of magnitude larger. We evaluate effects of oxygen depletion and local heating on surrounding tissue. These results give the power constraints when robots rely entirely on ambient available oxygen and identify aspects of the robot design significantly affecting available power. More generally, our numerical model provides an approach to evaluating robot design choices for nanomedicine treatments in and near capillaries.Comment: 28 pages, 7 figure

    A 1D computer model of the arterial circulation in horses : an important resource for studying global interactions between heart and vessels under normal and pathological conditions

    Get PDF
    Arterial rupture in horses has been observed during exercise, after phenylephrine administration or during parturition (uterine artery). In human pathophysiological research, the use of computer models for studying arterial hemodynamics and understanding normal and abnormal characteristics of arterial pressure and flow waveforms is very common. The objective of this research was to develop a computer model of the equine arterial circulation, in order to study local intra-arterial pressures and flow dynamics in horses. Morphologically, large differences exist between human and equine aortic arch and arterial branching patterns. Development of the present model was based on post-mortem obtained anatomical data of the arterial tree (arterial lengths, diameters and branching angles); in vivo collected ultrasonographic flow profiles from the common carotid artery, external iliac artery, median artery and aorta; and invasively collected pressure curves from carotid artery and aorta. These data were used as input for a previously validated (in humans) 1D arterial network model. Data on terminal resistance and arterial compliance parameters were tuned to equine physiology. Given the large arterial diameters, Womersley theory was used to compute friction coefficients, and the input into the arterial system was provided via a scaled time-varying elastance model of the left heart. Outcomes showed plausible predictions of pressure and flow waveforms throughout the considered arterial tree. Simulated flow waveform morphology was in line with measured flow profiles. Consideration of gravity further improved model based predicted waveforms. Derived flow waveform patterns could be explained using wave power analysis. The model offers possibilities as a research tool to predict changes in flow profiles and local pressures as a result of strenuous exercise or altered arterial wall properties related to age, breed or gender

    Analysis of Blood Flow in Patient-specific Models of Type B Aortic Dissection

    No full text
    Aortic dissection is the most common acute catastrophic event affecting the aorta. The majority of patients presenting with an uncomplicated type B dissection are treated medically, but 25% of these patients develop subsequent dilatation and aortic aneurysm formation. The reasons behind the long‐term outcomes of type B aortic dissection are poorly understood. As haemodynamic factors have been involved in the development and progression of a variety of cardiovascular diseases, the flow phenomena and environment in patient‐specific models of type B aortic dissection have been studied in this thesis by applying computational fluid dynamics (CFD) to in vivo data. The present study aims to gain more detailed knowledge of the links between morphology, flow characteristics and clinical outcomes in type B dissection patients. The thesis includes two parts of patient‐specific study: a multiple case cross‐sectional study and a single case longitudinal study. The multiple cases study involved a group of ten patients with classic type B aortic dissection with a focus on examining the flow characteristics as well as the role of morphological factors in determining the flow patterns and haemodynamic parameters. The single case study was based on a series of follow‐up scans of a patient who has a stable dissection, with an aim to identify the specified haemodynamic factors that are associated with the progression of aortic dissection. Both studies were carried out based on computed tomography images acquired from the patients. 4D Phase‐contrast magnetic resonance imaging was performed on a typical type B aortic dissection patient to provide detailed flow data for validation purpose. This was achieved by qualitative and quantitative comparisons of velocity‐encoded images with simulation results of the CFD model. The analysis of simulation results, including velocity, wall shear stress and turbulence intensity profiles, demonstrates certain correlations between the morphological features and haemodynamic factors, and also their effects on long‐term outcomes of type B aortic dissections. The simulation results were in good agreement with in vivo MR flow data in the patient‐specific validation case, giving credence to the application of the computational model to the study of flow conditions in aortic dissection. This study made an important contribution by identifying the role of certain morphological and haemodynamic factors in the development of type B aortic dissection, which may help provide a better guideline to assist surgeons in choosing optimal treatment protocol for individual patient

    A new framework for assessing subject-specific whole brain circulation and perfusion using MRI-based measurements and a multi-scale continuous flow model

    Get PDF
    A large variety of severe medical conditions involve alterations in microvascular circulation. Hence, measurements or simulation of circulation and perfusion has considerable clinical value and can be used for diagnostics, evaluation of treatment efficacy, and for surgical planning. However, the accuracy of traditional tracer kinetic one-compartment models is limited due to scale dependency. As a remedy, we propose a scale invariant mathematical framework for simulating whole brain perfusion. The suggested framework is based on a segmentation of anatomical geometry down to imaging voxel resolution. Large vessels in the arterial and venous network are identified from time-of-flight (ToF) and quantitative susceptibility mapping (QSM). Macro-scale flow in the large-vessel-network is accurately modelled using the Hagen-Poiseuille equation, whereas capillary flow is treated as two-compartment porous media flow. Macro-scale flow is coupled with micro-scale flow by a spatially distributing support function in the terminal endings. Perfusion is defined as the transition of fluid from the arterial to the venous compartment. We demonstrate a whole brain simulation of tracer propagation on a realistic geometric model of the human brain, where the model comprises distinct areas of grey and white matter, as well as large vessels in the arterial and venous vascular network. Our proposed framework is an accurate and viable alternative to traditional compartment models, with high relevance for simulation of brain perfusion and also for restoration of field parameters in clinical brain perfusion applications.publishedVersio
    • 

    corecore