6,128 research outputs found

    Measuring economic complexity of countries and products: which metric to use?

    Full text link
    Evaluating the economies of countries and their relations with products in the global market is a central problem in economics, with far-reaching implications to our theoretical understanding of the international trade as well as to practical applications, such as policy making and financial investment planning. The recent Economic Complexity approach aims to quantify the competitiveness of countries and the quality of the exported products based on the empirical observation that the most competitive countries have diversified exports, whereas developing countries only export few low quality products -- typically those exported by many other countries. Two different metrics, Fitness-Complexity and the Method of Reflections, have been proposed to measure country and product score in the Economic Complexity framework. We use international trade data and a recent ranking evaluation measure to quantitatively compare the ability of the two metrics to rank countries and products according to their importance in the network. The results show that the Fitness-Complexity metric outperforms the Method of Reflections in both the ranking of products and the ranking of countries. We also investigate a Generalization of the Fitness-Complexity metric and show that it can produce improved rankings provided that the input data are reliable

    Fractal-cluster theory and thermodynamic principles of the control and analysis for the self-organizing systems

    Full text link
    The theory of resource distribution in self-organizing systems on the basis of the fractal-cluster method has been presented. This theory consists of two parts: determined and probable. The first part includes the static and dynamic criteria, the fractal-cluster dynamic equations which are based on the fractal-cluster correlations and Fibonacci's range characteristics. The second part of the one includes the foundations of the probable characteristics of the fractal-cluster system. This part includes the dynamic equations of the probable evolution of these systems. By using the numerical researches of these equations for the stationary case the random state field of the one in the phase space of the DD, HH, FF criteria have been obtained. For the socio-economical and biological systems this theory has been tested.Comment: 37 pages, 20 figures, 4 table

    Dynamical generalization of a solvable family of two-electron model atoms with general interparticle repulsion

    Full text link
    Holas, Howard and March [Phys. Lett. A {\bf 310}, 451 (2003)] have obtained analytic solutions for ground-state properties of a whole family of two-electron spin-compensated harmonically confined model atoms whose different members are characterized by a specific interparticle potential energy u(r12r_{12}). Here, we make a start on the dynamic generalization of the harmonic external potential, the motivation being the serious criticism levelled recently against the foundations of time-dependent density-functional theory (e.g. [J. Schirmer and A. Dreuw, Phys. Rev. A {\bf 75}, 022513 (2007)]). In this context, we derive a simplified expression for the time-dependent electron density for arbitrary interparticle interaction, which is fully determined by an one-dimensional non-interacting Hamiltonian. Moreover, a closed solution for the momentum space density in the Moshinsky model is obtained.Comment: 5 pages, submitted to J. Phys.

    Condition number analysis and preconditioning of the finite cell method

    Get PDF
    The (Isogeometric) Finite Cell Method - in which a domain is immersed in a structured background mesh - suffers from conditioning problems when cells with small volume fractions occur. In this contribution, we establish a rigorous scaling relation between the condition number of (I)FCM system matrices and the smallest cell volume fraction. Ill-conditioning stems either from basis functions being small on cells with small volume fractions, or from basis functions being nearly linearly dependent on such cells. Based on these two sources of ill-conditioning, an algebraic preconditioning technique is developed, which is referred to as Symmetric Incomplete Permuted Inverse Cholesky (SIPIC). A detailed numerical investigation of the effectivity of the SIPIC preconditioner in improving (I)FCM condition numbers and in improving the convergence speed and accuracy of iterative solvers is presented for the Poisson problem and for two- and three-dimensional problems in linear elasticity, in which Nitche's method is applied in either the normal or tangential direction. The accuracy of the preconditioned iterative solver enables mesh convergence studies of the finite cell method

    Agent based mobile negotiation for personalized pricing of last minute theatre tickets

    Get PDF
    This is the post-print version of the final paper published in Expert Systems with Applications. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2012 Elsevier B.V.This paper proposes an agent based mobile negotiation framework for personalized pricing of last minutes theatre tickets whose values are dependent on the time remaining to the performance and the locations of potential customers. In particular, case based reasoning and fuzzy cognitive map techniques are adopted in the negotiation framework to identify the best initial offer zone and adopt multi criteria decision in the scoring function to evaluate offers. The proposed framework is tested via a computer simulation in which personalized pricing policy shows higher market performance than other policies therefore the validity of the proposed negotiation framework.The Ministry of Education, Science and Technology (Korea

    Observer-biased bearing condition monitoring: from fault detection to multi-fault classification

    Get PDF
    Bearings are simultaneously a fundamental component and one of the principal causes of failure in rotary machinery. The work focuses on the employment of fuzzy clustering for bearing condition monitoring, i.e., fault detection and classification. The output of a clustering algorithm is a data partition (a set of clusters) which is merely a hypothesis on the structure of the data. This hypothesis requires validation by domain experts. In general, clustering algorithms allow a limited usage of domain knowledge on the cluster formation process. In this study, a novel method allowing for interactive clustering in bearing fault diagnosis is proposed. The method resorts to shrinkage to generalize an otherwise unbiased clustering algorithm into a biased one. In this way, the method provides a natural and intuitive way to control the cluster formation process, allowing for the employment of domain knowledge to guiding it. The domain expert can select a desirable level of granularity ranging from fault detection to classification of a variable number of faults and can select a specific region of the feature space for detailed analysis. Moreover, experimental results under realistic conditions show that the adopted algorithm outperforms the corresponding unbiased algorithm (fuzzy c-means) which is being widely used in this type of problems. (C) 2016 Elsevier Ltd. All rights reserved.Grant number: 145602
    • …
    corecore