469 research outputs found

    Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches

    Get PDF
    Peer-to-peer (P2P) energy trading has emerged as a next-generation energy management mechanism for the smart grid that enables each prosumer of the network to participate in energy trading with one another and the grid. This poses a significant challenge in terms of modeling the decision-making process of each participant with conflicting interest and motivating prosumers to participate in energy trading and to cooperate, if necessary, for achieving different energy management goals. Therefore, such decision-making process needs to be built on solid mathematical and signal processing tools that can ensure an efficient operation of the smart grid. This paper provides an overview of the use of game theoretic approaches for P2P energy trading as a feasible and effective means of energy management. As such, we discuss various games and auction theoretic approaches by following a systematic classification to provide information on the importance of game theory for smart energy research. Then, the paper focuses on the P2P energy trading describing its key features and giving an introduction to an existing P2P testbed. Further, the paper zooms into the detail of some specific game and auction theoretic models that have recently been used in P2P energy trading and discusses some important finding of these schemes.Comment: 38 pages, single column, double spac

    Blockchain electricity trading using tokenised power delivery contracts. ESRI Working Paper No. 649 December 2019

    Get PDF
    This paper proposes a new mechanism for forward selling renewable electricity generation. In this transactive framework, a wind or solar farm may directly sell to consumers a claim on their future power output in the form of nonfungible blockchain tokens. Using the flexibility of smart contract code, which executes irrevocably on a blockchain, the realised generation levels will offset the token holders’ electricity consumption in near real-time. To elucidate the flexibility offered by such smart contracts, two ways of structuring these power delivery instruments are considered: firstly, an exotic tranched system, where more senior tokens holders enjoy priority claims on power, as compared against a simpler pro-rata scheme, where the realised output of a generator is equally apportioned between token holders. A notional market simulation is provided to explore whether, for instance, consumers could exploit the flatter power delivery profiles of more senior tranches to better schedule their responsive demands
    • …
    corecore