17,691 research outputs found

    Single sign-on and authorization for dynamic virtual organizations

    Get PDF
    The vision of the Grid is to support the dynamic establishment and subsequent management of virtual organizations (VO). To achieve this presents many challenges for the Grid community with perhaps the greatest one being security. Whilst Public Key Infrastructures (PKI) provide a form of single sign-on through recognition of trusted certification authorities, they have numerous limitations. The Internet2 Shibboleth architecture and protocols provide an enabling technology overcoming some of the issues with PKIs however Shibboleth too suffers from various limitations that make its application for dynamic VO establishment and management difficult. In this paper we explore the limitations of PKIs and Shibboleth and present an infrastructure that incorporates single sign-on with advanced authorization of federated security infrastructures and yet is seamless and targeted to the needs of end users. We explore this infrastructure through an educational case study at the National e-Science Centre (NeSC) at the University of Glasgow and Edinburgh

    A Concept for Attribute-Based Authorization on D-Grid Resources

    Get PDF
    In Germany's D-Grid project numerous Grid communities are working together to provide a common overarching Grid infrastructure. The major aims of D-Grid are the integration of existing Grid deployments and their interoperability. The challenge lies in the heterogeneity of the current implementations: three Grid middleware stacks and different Virtual Organization management approaches have to be embraced to achieve the intended goals. In this article we focus oil the implementation of an attribute-based authorization infrastructure that not only leverages the well-known VO attributes but also campus attributes managed by a Shibboleth federation

    Supporting security-oriented, collaborative nanoCMOS electronics research

    Get PDF
    Grid technologies support collaborative e-Research typified by multiple institutions and resources seamlessly shared to tackle common research problems. The rules for collaboration and resource sharing are commonly achieved through establishment and management of virtual organizations (VOs) where policies on access and usage of resources by collaborators are defined and enforced by sites involved in the collaboration. The expression and enforcement of these rules is made through access control systems where roles/privileges are defined and associated with individuals as digitally signed attribute certificates which collaborating sites then use to authorize access to resources. Key to this approach is that the roles are assigned to the right individuals in the VO; the attribute certificates are only presented to the appropriate resources in the VO; it is transparent to the end user researchers, and finally that it is manageable for resource providers and administrators in the collaboration. In this paper, we present a security model and implementation improving the overall usability and security of resources used in Grid-based e-Research collaborations through exploitation of the Internet2 Shibboleth technology. This is explored in the context of a major new security focused project at the National e-Science Centre (NeSC) at the University of Glasgow in the nanoCMOS electronics domain

    Security oriented e-infrastructures supporting neurological research and clinical trials

    Get PDF
    The neurological and wider clinical domains stand to gain greatly from the vision of the grid in providing seamless yet secure access to distributed, heterogeneous computational resources and data sets. Whilst a wealth of clinical data exists within local, regional and national healthcare boundaries, access to and usage of these data sets demands that fine grained security is supported and subsequently enforced. This paper explores the security challenges of the e-health domain, focusing in particular on authorization. The context of these explorations is the MRC funded VOTES (Virtual Organisations for Trials and Epidemiological Studies) and the JISC funded GLASS (Glasgow early adoption of Shibboleth project) which are developing Grid infrastructures for clinical trials with case studies in the brain trauma domain

    Semantic security: specification and enforcement of semantic policies for security-driven collaborations

    Get PDF
    Collaborative research can often have demands on finer-grained security that go beyond the authentication-only paradigm as typified by many e-Infrastructure/Grid based solutions. Supporting finer-grained access control is often essential for domains where the specification and subsequent enforcement of authorization policies is needed. The clinical domain is one area in particular where this is so. However it is the case that existing security authorization solutions are fragile, inflexible and difficult to establish and maintain. As a result they often do not meet the needs of real world collaborations where robustness and flexibility of policy specification and enforcement, and ease of maintenance are essential. In this paper we present results of the JISC funded Advanced Grid Authorisation through Semantic Technologies (AGAST) project (www.nesc.ac.uk/hub/projects/agast) and show how semantic-based approaches to security policy specification and enforcement can address many of the limitations with existing security solutions. These are demonstrated into the clinical trials domain through the MRC funded Virtual Organisations for Trials and Epidemiological Studies (VOTES) project (www.nesc.ac.uk/hub/projects/votes) and the epidemiological domain through the JISC funded SeeGEO project (www.nesc.ac.uk/hub/projects/seegeo)

    Data privacy by design: digital infrastructures for clinical collaborations

    Get PDF
    The clinical sciences have arguably the most stringent security demands on the adoption and roll-out of collaborative e-Infrastructure solutions such as those based upon Grid-based middleware. Experiences from the Medical Research Council (MRC) funded Virtual Organisations for Trials and Epidemiological Studies (VOTES) project and numerous other real world security driven projects at the UK e-Science National e-Science Centre (NeSC – www.nesc.ac.uk) have shown that whilst advanced Grid security and middleware solutions now offer capabilities to address many of the distributed data and security challenges in the clinical domain, the real clinical world as typified by organizations such as the National Health Service (NHS) in the UK are extremely wary of adoption of such technologies: firewalls; ethics; information governance, software validation, and the actual realities of existing infrastructures need to be considered from the outset. Based on these experiences we present a novel data linkage and anonymisation infrastructure that has been developed with close co-operation of the various stakeholders in the clinical domain (including the NHS) that addresses their concerns and satisfies the needs of the academic clinical research community. We demonstrate the implementation of this infrastructure through a representative clinical study on chronic diseases in Scotland

    Shibboleth-based access to and usage of grid resources

    Get PDF
    Security underpins grids and e-research. Without a robust, reliable and simple grid security infrastructure combined with commonly accepted security practices, large portions of the research community and wider industry will not engage. The predominant way in which security is currently addressed in the grid community is through public key infrastructures (PKI) based upon X.509 certificates to support authentication. Whilst PKIs address user identity issues, authentication does not provide fine grained control over what users are allowed to do on remote resources (authorization). In this paper we outline how we have successfully combined Shibboleth and advanced authorization technologies to provide simplified (from the user perspective) but fine grained security for access to and usage of grid resources. We demonstrate this approach through different security focused e-science projects being conducted at the National e-Science Centre (NeSC) at the University of Glasgow. We believe that this model is widely applicable and encourage the further uptake of e-science by non-IT specialists in the research communitie

    SciTokens: Capability-Based Secure Access to Remote Scientific Data

    Full text link
    The management of security credentials (e.g., passwords, secret keys) for computational science workflows is a burden for scientists and information security officers. Problems with credentials (e.g., expiration, privilege mismatch) cause workflows to fail to fetch needed input data or store valuable scientific results, distracting scientists from their research by requiring them to diagnose the problems, re-run their computations, and wait longer for their results. In this paper, we introduce SciTokens, open source software to help scientists manage their security credentials more reliably and securely. We describe the SciTokens system architecture, design, and implementation addressing use cases from the Laser Interferometer Gravitational-Wave Observatory (LIGO) Scientific Collaboration and the Large Synoptic Survey Telescope (LSST) projects. We also present our integration with widely-used software that supports distributed scientific computing, including HTCondor, CVMFS, and XrootD. SciTokens uses IETF-standard OAuth tokens for capability-based secure access to remote scientific data. The access tokens convey the specific authorizations needed by the workflows, rather than general-purpose authentication impersonation credentials, to address the risks of scientific workflows running on distributed infrastructure including NSF resources (e.g., LIGO Data Grid, Open Science Grid, XSEDE) and public clouds (e.g., Amazon Web Services, Google Cloud, Microsoft Azure). By improving the interoperability and security of scientific workflows, SciTokens 1) enables use of distributed computing for scientific domains that require greater data protection and 2) enables use of more widely distributed computing resources by reducing the risk of credential abuse on remote systems.Comment: 8 pages, 6 figures, PEARC '18: Practice and Experience in Advanced Research Computing, July 22--26, 2018, Pittsburgh, PA, US

    Grid infrastructures supporting paediatric endocrinology across Europe

    Get PDF
    Paediatric endocrinology is a highly specialised area of clinical medicine with many experts with specific knowledge distributed over a wide geographical area. The European Society for Paediatric Endocrinology (ESPE) is an example of such a body of experts that require regular collaboration and sharing of data and knowledge. This paper describes work, developed as a corollary to the VOTES project [1] and implementing similar architectures, to provide a data grid that allows information to be efficiently distributed between collaborating partners, and also allows wide-scale analyses to be run over the entire data-set, which necessarily involves crossing domain boundaries and negotiating data access between administrations that only trust each other to a limited degree

    Integrating security solutions to support nanoCMOS electronics research

    Get PDF
    The UK Engineering and Physical Sciences Research Council (EPSRC) funded Meeting the Design Challenges of nanoCMOS Electronics (nanoCMOS) is developing a research infrastructure for collaborative electronics research across multiple institutions in the UK with especially strong industrial and commercial involvement. Unlike other domains, the electronics industry is driven by the necessity of protecting the intellectual property of the data, designs and software associated with next generation electronics devices and therefore requires fine-grained security. Similarly, the project also demands seamless access to large scale high performance compute resources for atomic scale device simulations and the capability to manage the hundreds of thousands of files and the metadata associated with these simulations. Within this context, the project has explored a wide range of authentication and authorization infrastructures facilitating compute resource access and providing fine-grained security over numerous distributed file stores and files. We conclude that no single security solution meets the needs of the project. This paper describes the experiences of applying X.509-based certificates and public key infrastructures, VOMS, PERMIS, Kerberos and the Internet2 Shibboleth technologies for nanoCMOS security. We outline how we are integrating these solutions to provide a complete end-end security framework meeting the demands of the nanoCMOS electronics domain
    • 

    corecore