14,400 research outputs found

    ROAM: a Rich Object Appearance Model with Application to Rotoscoping

    Get PDF
    Rotoscoping, the detailed delineation of scene elements through a video shot, is a painstaking task of tremendous importance in professional post-production pipelines. While pixel-wise segmentation techniques can help for this task, professional rotoscoping tools rely on parametric curves that offer the artists a much better interactive control on the definition, editing and manipulation of the segments of interest. Sticking to this prevalent rotoscoping paradigm, we propose a novel framework to capture and track the visual aspect of an arbitrary object in a scene, given a first closed outline of this object. This model combines a collection of local foreground/background appearance models spread along the outline, a global appearance model of the enclosed object and a set of distinctive foreground landmarks. The structure of this rich appearance model allows simple initialization, efficient iterative optimization with exact minimization at each step, and on-line adaptation in videos. We demonstrate qualitatively and quantitatively the merit of this framework through comparisons with tools based on either dynamic segmentation with a closed curve or pixel-wise binary labelling

    Robust multi-clue face tracking system

    Get PDF
    In this paper we present a multi-clue face tracking system, based on the combination of a face detector and two independent trackers. The detector, a variant of the Viola-Jones algorithm, is set to generate very low false positive error rate. It initiates the tracking system and updates its state. The trackers, based on 3DRS and optical flow respectively, have been chosen to complement each other in different conditions. The main focus of this work is the integration of the two trackers and the design of a closed loop detector-tracker system, aiming at achieving superior robustness at real-time operation on a PC platform. Tests were carried out to assess the actual performance of the system. With an average of about 95% correct face location rate and no significant false positives, the proposed approach appears to be particularly robust to complex backgrounds, ambient light variation, face orientation and scale changes, partial occlusions, different\ud facial expressions and presence of other unwanted faces

    Click Carving: Segmenting Objects in Video with Point Clicks

    Full text link
    We present a novel form of interactive video object segmentation where a few clicks by the user helps the system produce a full spatio-temporal segmentation of the object of interest. Whereas conventional interactive pipelines take the user's initialization as a starting point, we show the value in the system taking the lead even in initialization. In particular, for a given video frame, the system precomputes a ranked list of thousands of possible segmentation hypotheses (also referred to as object region proposals) using image and motion cues. Then, the user looks at the top ranked proposals, and clicks on the object boundary to carve away erroneous ones. This process iterates (typically 2-3 times), and each time the system revises the top ranked proposal set, until the user is satisfied with a resulting segmentation mask. Finally, the mask is propagated across the video to produce a spatio-temporal object tube. On three challenging datasets, we provide extensive comparisons with both existing work and simpler alternative methods. In all, the proposed Click Carving approach strikes an excellent balance of accuracy and human effort. It outperforms all similarly fast methods, and is competitive or better than those requiring 2 to 12 times the effort.Comment: A preliminary version of the material in this document was filed as University of Texas technical report no. UT AI16-0

    Active Contour Models for Manifold Valued Image Segmentation

    Full text link
    Image segmentation is the process of partitioning a image into different regions or groups based on some characteristics like color, texture, motion or shape etc. Active contours is a popular variational method for object segmentation in images, in which the user initializes a contour which evolves in order to optimize an objective function designed such that the desired object boundary is the optimal solution. Recently, imaging modalities that produce Manifold valued images have come up, for example, DT-MRI images, vector fields. The traditional active contour model does not work on such images. In this paper, we generalize the active contour model to work on Manifold valued images. As expected, our algorithm detects regions with similar Manifold values in the image. Our algorithm also produces expected results on usual gray-scale images, since these are nothing but trivial examples of Manifold valued images. As another application of our general active contour model, we perform texture segmentation on gray-scale images by first creating an appropriate Manifold valued image. We demonstrate segmentation results for manifold valued images and texture images

    Image Segmentation Using Active Contours Driven by the Bhattacharyya Gradient Flow

    Get PDF
    ©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2007.908073This paper addresses the problem of image segmentation by means of active contours, whose evolution is driven by the gradient flow derived froman energy functional that is based on the Bhattacharyya distance. In particular, given the values of a photometric variable (or of a set thereof), which is to be used for classifying the image pixels, the active contours are designed to converge to the shape that results in maximal discrepancy between the empirical distributions of the photometric variable inside and outside of the contours. The above discrepancy is measured by means of the Bhattacharyya distance that proves to be an extremely useful tool for solving the problem at hand. The proposed methodology can be viewed as a generalization of the segmentation methods, in which active contours maximize the difference between a finite number of empirical moments of the "inside" and "outside" distributions. Furthermore, it is shown that the proposed methodology is very versatile and flexible in the sense that it allows one to easily accommodate a diversity of the image features based on which the segmentation should be performed. As an additional contribution, a method for automatically adjusting the smoothness properties of the empirical distributions is proposed. Such a procedure is crucial in situations when the number of data samples (supporting a certain segmentation class) varies considerably in the course of the evolution of the active contour. In this case, the smoothness properties of the empirical distributions have to be properly adjusted to avoid either over- or underestimation artifacts. Finally, a number of relevant segmentation results are demonstrated and some further research directions are discussed
    • …
    corecore