3,645 research outputs found

    A study on n-gram indexing of musical features

    Get PDF
    Since only simple symbol-based manipulations are needed, n-gram indexing is used for natural languages where syntactic or semantic analyses are often difficult. Music, whose automatic analysis for patterns such as motifs and phrases are difficult, inaccurate or computationally expensive, is thus similar to natural languages. The use of n-gram in music retrieval systems is thus a natural choice. In this paper, we study a number of issues regarding n-gram indexing of musical features using simulated queries. They are: whether combinatorial explosion is a problem in n-gram indexing of musical features, the relative discrimination power of six different musical features, the value of n needed for them, and the average amount of false positives returned when n-grams are used to index music.published_or_final_versio

    Modeling musicological information as trigrams in a system for simultaneous chord and local key extraction

    Get PDF
    In this paper, we discuss the introduction of a trigram musicological model in a simultaneous chord and local key extraction system. By enlarging the context of the musicological model, we hoped to achieve a higher accuracy that could justify the associated higher complexity and computational load of the search for the optimal solution. Experiments on multiple data sets have demonstrated that the trigram model has indeed a larger predictive power (a lower perplexity). This raised predictive power resulted in an improvement in the key extraction capabilities, but no improvement in chord extraction when compared to a system with a bigram musicological model

    Music Similarity Estimation

    Get PDF
    Music is a complicated form of communication, where creators and culture communicate and expose their individuality. After music digitalization took place, recommendation systems and other online services have become indispensable in the field of Music Information Retrieval (MIR). To build these systems and recommend the right choice of song to the user, classification of songs is required. In this paper, we propose an approach for finding similarity between music based on mid-level attributes like pitch, midi value corresponding to pitch, interval, contour and duration and applying text based classification techniques. Our system predicts jazz, metal and ragtime for western music. The experiment to predict the genre of music is conducted based on 450 music files and maximum accuracy achieved is 95.8% across different n-grams. We have also analyzed the Indian classical Carnatic music and are classifying them based on its raga. Our system predicts Sankarabharam, Mohanam and Sindhubhairavi ragas. The experiment to predict the raga of the song is conducted based on 95 music files and the maximum accuracy achieved is 90.3% across different n-grams. Performance evaluation is done by using the accuracy score of scikit-learn

    Affective Music Information Retrieval

    Full text link
    Much of the appeal of music lies in its power to convey emotions/moods and to evoke them in listeners. In consequence, the past decade witnessed a growing interest in modeling emotions from musical signals in the music information retrieval (MIR) community. In this article, we present a novel generative approach to music emotion modeling, with a specific focus on the valence-arousal (VA) dimension model of emotion. The presented generative model, called \emph{acoustic emotion Gaussians} (AEG), better accounts for the subjectivity of emotion perception by the use of probability distributions. Specifically, it learns from the emotion annotations of multiple subjects a Gaussian mixture model in the VA space with prior constraints on the corresponding acoustic features of the training music pieces. Such a computational framework is technically sound, capable of learning in an online fashion, and thus applicable to a variety of applications, including user-independent (general) and user-dependent (personalized) emotion recognition and emotion-based music retrieval. We report evaluations of the aforementioned applications of AEG on a larger-scale emotion-annotated corpora, AMG1608, to demonstrate the effectiveness of AEG and to showcase how evaluations are conducted for research on emotion-based MIR. Directions of future work are also discussed.Comment: 40 pages, 18 figures, 5 tables, author versio

    Implicit learning of recursive context-free grammars

    Get PDF
    Context-free grammars are fundamental for the description of linguistic syntax. However, most artificial grammar learning experiments have explored learning of simpler finite-state grammars, while studies exploring context-free grammars have not assessed awareness and implicitness. This paper explores the implicit learning of context-free grammars employing features of hierarchical organization, recursive embedding and long-distance dependencies. The grammars also featured the distinction between left- and right-branching structures, as well as between centre- and tail-embedding, both distinctions found in natural languages. People acquired unconscious knowledge of relations between grammatical classes even for dependencies over long distances, in ways that went beyond learning simpler relations (e.g. n-grams) between individual words. The structural distinctions drawn from linguistics also proved important as performance was greater for tail-embedding than centre-embedding structures. The results suggest the plausibility of implicit learning of complex context-free structures, which model some features of natural languages. They support the relevance of artificial grammar learning for probing mechanisms of language learning and challenge existing theories and computational models of implicit learning

    Frequency shifting approach towards textual transcription of heartbeat sounds

    Get PDF
    Auscultation is an approach for diagnosing many cardiovascular problems. Automatic analysis of heartbeat sounds and extraction of its audio features can assist physicians towards diagnosing diseases. Textual transcription allows recording a continuous heart sound stream using a text format which can be stored in very small memory in comparison with other audio formats. In addition, a text-based data allows applying indexing and searching techniques to access to the critical events. Hence, the transcribed heartbeat sounds provides useful information to monitor the behavior of a patient for the long duration of time. This paper proposes a frequency shifting method in order to improve the performance of the transcription. The main objective of this study is to transfer the heartbeat sounds to the music domain. The proposed technique is tested with 100 samples which were recorded from different heart diseases categories. The observed results show that, the proposed shifting method significantly improves the performance of the transcription

    Echoes of Persuasion: The Effect of Euphony in Persuasive Communication

    Full text link
    While the effect of various lexical, syntactic, semantic and stylistic features have been addressed in persuasive language from a computational point of view, the persuasive effect of phonetics has received little attention. By modeling a notion of euphony and analyzing four datasets comprising persuasive and non-persuasive sentences in different domains (political speeches, movie quotes, slogans and tweets), we explore the impact of sounds on different forms of persuasiveness. We conduct a series of analyses and prediction experiments within and across datasets. Our results highlight the positive role of phonetic devices on persuasion
    corecore