3,225 research outputs found

    Forum Session at the First International Conference on Service Oriented Computing (ICSOC03)

    Get PDF
    The First International Conference on Service Oriented Computing (ICSOC) was held in Trento, December 15-18, 2003. The focus of the conference ---Service Oriented Computing (SOC)--- is the new emerging paradigm for distributed computing and e-business processing that has evolved from object-oriented and component computing to enable building agile networks of collaborating business applications distributed within and across organizational boundaries. Of the 181 papers submitted to the ICSOC conference, 10 were selected for the forum session which took place on December the 16th, 2003. The papers were chosen based on their technical quality, originality, relevance to SOC and for their nature of being best suited for a poster presentation or a demonstration. This technical report contains the 10 papers presented during the forum session at the ICSOC conference. In particular, the last two papers in the report ere submitted as industrial papers

    Multi Site Coordination using a Multi-Agent System

    Get PDF
    A new approach of coordination of decisions in a multi site system is proposed. It is based this approach on a multi-agent concept and on the principle of distributed network of enterprises. For this purpose, each enterprise is defined as autonomous and performs simultaneously at the local and global levels. The basic component of our approach is a so-called Virtual Enterprise Node (VEN), where the enterprise network is represented as a set of tiers (like in a product breakdown structure). Within the network, each partner constitutes a VEN, which is in contact with several customers and suppliers. Exchanges between the VENs ensure the autonomy of decision, and guarantiee the consistency of information and material flows. Only two complementary VEN agents are necessary: one for external interactions, the Negotiator Agent (NA) and one for the planning of internal decisions, the Planner Agent (PA). If supply problems occur in the network, two other agents are defined: the Tier Negotiator Agent (TNA) working at the tier level only and the Supply Chain Mediator Agent (SCMA) working at the level of the enterprise network. These two agents are only active when the perturbation occurs. Otherwise, the VENs process the flow of information alone. With this new approach, managing enterprise network becomes much more transparent and looks like managing a simple enterprise in the network. The use of a Multi-Agent System (MAS) allows physical distribution of the decisional system, and procures a heterarchical organization structure with a decentralized control that guaranties the autonomy of each entity and the flexibility of the network

    Collaborative Environments. Considerations Concerning Some Collaborative Systems

    Get PDF
    It is obvious, that all collaborative environments (workgroups, communities of practice, collaborative enterprises) are based on knowledge and between collaboration and knowledge management there is a strong interdependence. The evolution of information systems in these collaborative environments led to the sudden necessity to adopt, for maintaining the virtual activities and processes, the latest technologies/systems, which are capable to support integrated collaboration in business services. In these environments, portal-based IT platforms will integrate multi-agent collaborative systems, collaborative tools, different enterprise applications and other useful information systems.collaboration, collaborative environments, knowledge management, collaborative systems, portals, knowledge portals, agile development of portals

    A reference architecture for the collaborative planning modelling process in multi-tier supply chain networks: a Zachman-based approach

    Full text link
    A prominent and contemporary challenge for supply chain (SC) managers concerns the coordination of the efforts of the nodes of the SC in order to mitigate unpredictable market behaviour and satisfy variable customer demand. A productive response to this challenge is to share pertinent market-related information, on a timely basis, in order to effectively manage the decision-making associated with the SC production and transportation planning processes. This paper analyses the most well-known reference modelling languages and frameworks in the collaborative SC field and proposes a novel reference architecture, based upon the Zachman Framework (ZF), for supporting collaborative plan- ning (CP) in multi-level, SC networks. The architecture is applied to an automotive supply chain configuration, where, under a collaborative and decentralised approach, improvements in the service levels for each node were observed. The architecture was shown to provide the base discipline for the organisation of the processes required to manage the CP activity.The authors thanks the support from the project 'Operations Design and Management in Global Supply Chains (GLOBOP)' (Ref. DPI2012-38061-C02-01), funded by the Ministry of Science and Education of Spain, for the supply chain environment research contribution.Hernández Hormazábal, JE.; Lyons, AC.; Poler, R.; Mula, J.; Goncalves, R. (2014). A reference architecture for the collaborative planning modelling process in multi-tier supply chain networks: a Zachman-based approach. Production Planning and Control. 25(13-14):1118-1134. https://doi.org/10.1080/09537287.2013.808842S111811342513-14Al-Mutawah, K., Lee, V., & Cheung, Y. (2008). A new multi-agent system framework for tacit knowledge management in manufacturing supply chains. Journal of Intelligent Manufacturing, 20(5), 593-610. doi:10.1007/s10845-008-0142-0Baïna, S., Panetto, H., & Morel, G. (2009). New paradigms for a product oriented modelling: Case study for traceability. Computers in Industry, 60(3), 172-183. doi:10.1016/j.compind.2008.12.004Berasategi, L., Arana, J., & Castellano, E. (2011). A comprehensive framework for collaborative networked innovation. Production Planning & Control, 22(5-6), 581-593. doi:10.1080/09537287.2010.536628Chan, H. K., & Chan, F. T. S. (2009). A review of coordination studies in the context of supply chain dynamics. International Journal of Production Research, 48(10), 2793-2819. doi:10.1080/00207540902791843Chen, D., Doumeingts, G., & Vernadat, F. (2008). Architectures for enterprise integration and interoperability: Past, present and future. Computers in Industry, 59(7), 647-659. doi:10.1016/j.compind.2007.12.016Choi, Y., Kang, D., Chae, H., & Kim, K. (2006). An enterprise architecture framework for collaboration of virtual enterprise chains. The International Journal of Advanced Manufacturing Technology, 35(11-12), 1065-1078. doi:10.1007/s00170-006-0789-7Choi, Y., Kim, K., & Kim, C. (2005). A design chain collaboration framework using reference models. The International Journal of Advanced Manufacturing Technology, 26(1-2), 183-190. doi:10.1007/s00170-004-2262-9COLQUHOUN, G. J., BAINES, R. W., & CROSSLEY, R. (1993). A state of the art review of IDEFO. International Journal of Computer Integrated Manufacturing, 6(4), 252-264. doi:10.1080/09511929308944576Danilovic, M., & Winroth, M. (2005). A tentative framework for analyzing integration in collaborative manufacturing network settings: a case study. Journal of Engineering and Technology Management, 22(1-2), 141-158. doi:10.1016/j.jengtecman.2004.11.008Derrouiche, R., Neubert, G., Bouras, A., & Savino, M. (2010). B2B relationship management: a framework to explore the impact of collaboration. Production Planning & Control, 21(6), 528-546. doi:10.1080/09537287.2010.488932Dudek, G., & Stadtler, H. (2005). Negotiation-based collaborative planning between supply chains partners. European Journal of Operational Research, 163(3), 668-687. doi:10.1016/j.ejor.2004.01.014Gruat La Forme, F.-A., Genoulaz, V. B., & Campagne, J.-P. (2007). A framework to analyse collaborative performance. Computers in Industry, 58(7), 687-697. doi:10.1016/j.compind.2007.05.007Gutiérrez Vela, F. L., Isla Montes, J. L., Paderewski Rodríguez, P., Sánchez Román, M., & Jiménez Valverde, B. (2007). An architecture for access control management in collaborative enterprise systems based on organization models. Science of Computer Programming, 66(1), 44-59. doi:10.1016/j.scico.2006.10.005Hernández, J. E., Poler, R., Mula, J., & Lario, F. C. (2010). The Reverse Logistic Process of an Automobile Supply Chain Network Supported by a Collaborative Decision-Making Model. Group Decision and Negotiation, 20(1), 79-114. doi:10.1007/s10726-010-9205-7Hernández, J. E., J. Mula, R. Poler, and A. C. Lyons. 2013. “Collaborative Planning in Multi-Tier Supply Chains Supported by a Negotiation-Based Mechanism and Multi-Agent System.”Group Decision and Negotiation Journal. doi:10.1007/s10726-013-9358-2.Jardim-Goncalves, R., Grilo, A., Agostinho, C., Lampathaki, F., & Charalabidis, Y. (2013). Systematisation of Interoperability Body of Knowledge: the foundation for Enterprise Interoperability as a science. Enterprise Information Systems, 7(1), 7-32. doi:10.1080/17517575.2012.684401Kampstra, R. P., Ashayeri, J., & Gattorna, J. L. (2006). Realities of supply chain collaboration. The International Journal of Logistics Management, 17(3), 312-330. doi:10.1108/09574090610717509Kim, W., Chung, M. J., Qureshi, K., & Choi, Y. K. (2006). WSCPC: An architecture using semantic web services for collaborative product commerce. Computers in Industry, 57(8-9), 787-796. doi:10.1016/j.compind.2006.04.007Ku, K.-C., Kao, H.-P., & Gurumurthy, C. K. (2007). Virtual inter-firm collaborative framework—An IC foundry merger/acquisition project. Technovation, 27(6-7), 388-401. doi:10.1016/j.technovation.2007.02.010LEE, J., GRUNINGER, M., JIN, Y., MALONE, T., TATE, A., YOST, G., & OTHER MEMBERS OF THE PIF WORKING GROUP. (1998). The Process Interchange Format and Framework. The Knowledge Engineering Review, 13(1), 91-120. doi:10.1017/s0269888998001015Lee, J., Chae, H., Kim, C.-H., & Kim, K. (2009). Design of product ontology architecture for collaborative enterprises. Expert Systems with Applications, 36(2), 2300-2309. doi:10.1016/j.eswa.2007.12.042Liu, J., Zhang, S., & Hu, J. (2005). A case study of an inter-enterprise workflow-supported supply chain management system. Information & Management, 42(3), 441-454. doi:10.1016/j.im.2004.01.010Marques, D. M. N., & Guerrini, F. M. (2011). Reference model for implementing an MRP system in a highly diverse component and seasonal lean production environment. Production Planning & Control, 23(8), 609-623. doi:10.1080/09537287.2011.572469Mula, J., Peidro, D., & Poler, R. (2010). The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand. International Journal of Production Economics, 128(1), 136-143. doi:10.1016/j.ijpe.2010.06.007Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4), 541-580. doi:10.1109/5.24143Noran, O. (2003). An analysis of the Zachman framework for enterprise architecture from the GERAM perspective. Annual Reviews in Control, 27(2), 163-183. doi:10.1016/j.arcontrol.2003.09.002Olorunniwo, F. O., & Li, X. (2010). Information sharing and collaboration practices in reverse logistics. Supply Chain Management: An International Journal, 15(6), 454-462. doi:10.1108/13598541011080437Recker, J., Rosemann, M., Indulska, M., … Green, P. (2009). Business Process Modeling- A Comparative Analysis. Journal of the Association for Information Systems, 10(04), 333-363. doi:10.17705/1jais.00193Rodriguez, K., & Al-Ashaab, A. (2005). Knowledge web-based system architecture for collaborative product development. Computers in Industry, 56(1), 125-140. doi:10.1016/j.compind.2004.07.004Romero, F., Company, P., Agost, M.-J., & Vila, C. (2008). Activity modelling in a collaborative ceramic tile design chain: an enhanced IDEF0 approach. Research in Engineering Design, 19(1), 1-20. doi:10.1007/s00163-007-0040-zSandberg, E. (2007). Logistics collaboration in supply chains: practice vs. theory. The International Journal of Logistics Management, 18(2), 274-293. doi:10.1108/09574090710816977Spekman, R. E., & Carraway, R. (2006). Making the transition to collaborative buyer–seller relationships: An emerging framework. Industrial Marketing Management, 35(1), 10-19. doi:10.1016/j.indmarman.2005.07.002Stevens, W. P., Myers, G. J., & Constantine, L. L. (1974). Structured design. IBM Systems Journal, 13(2), 115-139. doi:10.1147/sj.132.0115Ulieru, M. (2000). A multi-resolution collaborative architecture for web-centric global manufacturing. Information Sciences, 127(1-2), 3-21. doi:10.1016/s0020-0255(00)00026-8Van der Aalst, W. M. P. (1999). Formalization and verification of event-driven process chains. Information and Software Technology, 41(10), 639-650. doi:10.1016/s0950-5849(99)00016-6Zachman, J. A. (1987). A framework for information systems architecture. IBM Systems Journal, 26(3), 276-292. doi:10.1147/sj.263.0276Zapp, M., Forster, C., Verl, A., & Bauernhansl, T. (2012). A Reference Model for Collaborative Capacity Planning Between Automotive and Semiconductor Industry. Procedia CIRP, 3, 155-160. doi:10.1016/j.procir.2012.07.028Zeng, Y., Wang, L., Deng, X., Cao, X., & Khundker, N. (2012). Secure collaboration in global design and supply chain environment: Problem analysis and literature review. Computers in Industry, 63(6), 545-556. doi:10.1016/j.compind.2012.05.00

    Overview on agent-based social modelling and the use of formal languages

    Get PDF
    Transdisciplinary Models and Applications investigates a variety of programming languages used in validating and verifying models in order to assist in their eventual implementation. This book will explore different methods of evaluating and formalizing simulation models, enabling computer and industrial engineers, mathematicians, and students working with computer simulations to thoroughly understand the progression from simulation to product, improving the overall effectiveness of modeling systems.Postprint (author's final draft

    CBG-Framework: A bottom-up model-based approach for Collaborative Business Process Management

    Get PDF
    Nowadays most existing products and services are the result of the collaboration of a large number of companies that form a value chain known as Supply Chain (SC). Then individual Business Process Management (BPM) requires a holistic vision that incorporates an inter organizational view that supports SC decision making. This study proposes a novel idea trying to address collaborative BP modelling problem with a new perspective, a bottom-up approach, reusing process models that each organization may have created with a different modelling language. Collaborative Business Generation (CBG) Framework, following Model-Driven Engineering (MDE) paradigm, includes a meta model, a method, a set of model transformations and a support tool to create collaborative BP models from individual ones, maintaining privacy and autonomy in decision making. This paper presents main CBG-Framework elements as well as a real world case study for early validation.Ministerio de Economía, Industria y Competitividad TIN2016-76956-C3-2-RMinisterio de Economía, Industria y Competitividad TIN2015-71938-RED

    Knowledge discovery for moderating collaborative projects

    Get PDF
    In today's global market environment, enterprises are increasingly turning towards collaboration in projects to leverage their resources, skills and expertise, and simultaneously address the challenges posed in diverse and competitive markets. Moderators, which are knowledge based systems have successfully been used to support collaborative teams by raising awareness of problems or conflicts. However, the functioning of a moderator is limited to the knowledge it has about the team members. Knowledge acquisition, learning and updating of knowledge are the major challenges for a Moderator's implementation. To address these challenges a Knowledge discOvery And daTa minINg inteGrated (KOATING) framework is presented for Moderators to enable them to continuously learn from the operational databases of the company and semi-automatically update the corresponding expert module. The architecture for the Universal Knowledge Moderator (UKM) shows how the existing moderators can be extended to support global manufacturing. A method for designing and developing the knowledge acquisition module of the Moderator for manual and semi-automatic update of knowledge is documented using the Unified Modelling Language (UML). UML has been used to explore the static structure and dynamic behaviour, and describe the system analysis, system design and system development aspects of the proposed KOATING framework. The proof of design has been presented using a case study for a collaborative project in the form of construction project supply chain. It has been shown that Moderators can "learn" by extracting various kinds of knowledge from Post Project Reports (PPRs) using different types of text mining techniques. Furthermore, it also proposed that the knowledge discovery integrated moderators can be used to support and enhance collaboration by identifying appropriate business opportunities and identifying corresponding partners for creation of a virtual organization. A case study is presented in the context of a UK based SME. Finally, this thesis concludes by summarizing the thesis, outlining its novelties and contributions, and recommending future research

    A new MDA-SOA based framework for intercloud interoperability

    Get PDF
    Cloud computing has been one of the most important topics in Information Technology which aims to assure scalable and reliable on-demand services over the Internet. The expansion of the application scope of cloud services would require cooperation between clouds from different providers that have heterogeneous functionalities. This collaboration between different cloud vendors can provide better Quality of Services (QoS) at the lower price. However, current cloud systems have been developed without concerns of seamless cloud interconnection, and actually they do not support intercloud interoperability to enable collaboration between cloud service providers. Hence, the PhD work is motivated to address interoperability issue between cloud providers as a challenging research objective. This thesis proposes a new framework which supports inter-cloud interoperability in a heterogeneous computing resource cloud environment with the goal of dispatching the workload to the most effective clouds available at runtime. Analysing different methodologies that have been applied to resolve various problem scenarios related to interoperability lead us to exploit Model Driven Architecture (MDA) and Service Oriented Architecture (SOA) methods as appropriate approaches for our inter-cloud framework. Moreover, since distributing the operations in a cloud-based environment is a nondeterministic polynomial time (NP-complete) problem, a Genetic Algorithm (GA) based job scheduler proposed as a part of interoperability framework, offering workload migration with the best performance at the least cost. A new Agent Based Simulation (ABS) approach is proposed to model the inter-cloud environment with three types of agents: Cloud Subscriber agent, Cloud Provider agent, and Job agent. The ABS model is proposed to evaluate the proposed framework.Fundação para a Ciência e a Tecnologia (FCT) - (Referencia da bolsa: SFRH SFRH / BD / 33965 / 2009) and EC 7th Framework Programme under grant agreement n° FITMAN 604674 (http://www.fitman-fi.eu
    corecore