18,511 research outputs found

    Penumbral micro-jets at high spatial and temporal resolution

    Full text link
    Sunspot observations in chromospheric spectral lines have revealed the existence of short-lived linear bright transients, commonly referred to as penumbral micro-jets (PMJs). Details on the origin and physical nature of PMJs are to large extend still unkown. We aim to characterize the dynamical nature of PMJs to provide guidance for future modelling efforts. We analyze high spatial (0.1 arcsec) and temporal resolution (1 s) Ca II H filtergram (0.1 nm bandwidth) observations of a sunspot obtained on two consecutive days with the Swedish 1-m Solar Telescope. We find that PMJs appear to be the rapid brightening of an already existing (faint) fibril. The rapid brightening is the fast increase (typically less than 10 s) in intensity over significant length (several 100s of km) of the existing fibril. For most PMJs, we cannot identify a clear root or source from where the brightening appears to originate. After the fast onset, about half of the PMJs have a top that is moving with an apparent velocity between 5 and 14 km/s, most of them upwards. For the other PMJs, there is no significant motion of the top. For about a third of the PMJs we observe a splitting into two parallel and co-evolving linear features during the later phases of the lifetime of the PMJ. We conclude that mass flows can play only limited role in the onset phase of PMJs and that it is more likely that we see the effect of a fast heating front.Comment: Accepted for publication in Astronomy & Astrophysics. Movies are available at http://folk.uio.no/rouppe/pmj_highcadence

    The quiet chromosphere. Old wisdom, new insights, future needs

    Full text link
    The introduction to this review summarizes chromosphere observation in two figures. The first part showcases the historical emphasis on the eclipse chromosphere in the development of NLTE line formation theory and criticizes 1D modeling. The second part advertises recent breakthroughs after many decades of standstill. The third part discusses what may or should come next.Comment: To appear in Proceedings 25th NSO Workshop, editors A. Tritschler, K. Reardon, H. Uitenbroek, Mem. Soc. Astr. Ita

    Examining Water Quality along Cozine Creek

    Get PDF
    Water is an essential resource for all life. Water sustains ecological processes that are important to the survival of fish, vegetation, wetlands, and birds. It contributes to humans by providing drinking water, irrigation, and also is an inspiration for recreational, cultural, and spiritual practices. Anthropogenic activities affect water quality in various ways, and a significant portion of the human population is currently experiencing water stress. The quality of water, as well as its social and economic value, share a positive relationship. Therefore, as water quality becomes degraded by pollution, the environmental, social, and economic value also decrease. The recognition of the importance of safe water has created crucial policies in the United States and internationally. Our study looks specifically into the water quality of Cozine Creek, located in Yamhill County, Oregon. The goal of our study was to determine how water quality variables compared among our sampling sites in 2017 and across the years from 2011 to 2017. We used the definition of water quality as determined by measuring physical, chemical, and biological characteristics. We measured dissolved oxygen (DO), biochemical oxygen demand (BOD), pH, temperature, flow, turbidity, macroinvertebrates, bacterial counts, nutrients, and surrounding vegetation. To present a better understanding to the measurements of the water quality variables, we compared the measurements to the scientifically known parameters of healthy salmonid habitat, since the presence of salmon indicates a healthy watershed. Our data suggest that the overall quality of our three sites along Cozine Creek is poor, and there was little to no improvement of water quality when compared to previous years\u27 data. It is likely that the water quality can be attributed to agricultural and urban runoff possibly containing waste, storm water, pesticides, fertilizer, and other chemicals

    Chromospheric counterparts of solar transition region unresolved fine structure loops

    Full text link
    Low-lying loops have been discovered at the solar limb in transition region temperatures by the Interface Region Imaging Spectrograph (IRIS). They do not appear to reach coronal temperatures, and it has been suggested that they are the long-predicted unresolved fine structures (UFS). These loops are dynamic and believed to be visible during both heating and cooling phases. Making use of coordinated observations between IRIS and the Swedish 1-m Solar Telescope, we study how these loops impact the solar chromosphere. We show for the first time that there is indeed a chromospheric signal of these loops, seen mostly in the form of strong Doppler shifts and a conspicuous lack of chromospheric heating. In addition, we find that several instances have a inverse Y-shaped jet just above the loop, suggesting that magnetic reconnection is driving these events. Our observations add several puzzling details to the current knowledge of these newly discovered structures; this new information must be considered in theoretical models.Comment: 5 pages, 3 figures, 2 movies; accepted for publication in A&A Letter

    Thermal and non-thermal emission in the Cygnus X region

    Full text link
    Radio continuum observations detect non-thermal synchrotron and thermal bremsstrahlung radiation. Separation of the two different emission components is crucial to study the properties of diffuse interstellar medium. The Cygnus X region is one of the most complex areas in the radio sky which contains a number of massive stars and HII regions on the diffuse thermal and non-thermal background. More supernova remnants are expected to be discovered. We aim to develop a method which can properly separate the non-thermal and thermal radio continuum emission and apply it to the Cygnus X region. The result can be used to study the properties of different emission components and search for new supernova remnants in the complex. Multi-frequency radio continuum data from large-scale surveys are used to develop a new component separation method. Spectral analysis is done pixel by pixel for the non-thermal synchrotron emission with a realistic spectral index distribution and a fixed spectral index of beta = -2.1 for the thermal bremsstrahlung emission. With the new method, we separate the non-thermal and thermal components of the Cygnus X region at an angular resolution of 9.5arcmin. The thermal emission component is found to comprise 75% of the total continuum emission at 6cm. Thermal diffuse emission, rather than the discrete HII regions, is found to be the major contributor to the entire thermal budget. A smooth non-thermal emission background of 100 mK Tb is found. We successfully make the large-extent known supernova remnants and the HII regions embedded in the complex standing out, but no new large SNRs brighter than Sigma_1GHz = 3.7 x 10^-21 W m^-2 Hz^-1 sr^-1 are found.Comment: 9 pages, 5 figures, accepted by A&A. The quality of the figures is reduced due to file size limit of the websit

    Intermittent reconnection and plasmoids in UV bursts in the low solar atmosphere

    Full text link
    Magnetic reconnection is thought to drive a wide variety of dynamic phenomena in the solar atmosphere. Yet the detailed physical mechanisms driving reconnection are difficult to discern in the remote sensing observations that are used to study the solar atmosphere. In this paper we exploit the high-resolution instruments Interface Region Imaging Spectrograph (IRIS) and the new CHROMIS Fabry-Perot instrument at the Swedish 1-m Solar Telescope (SST) to identify the intermittency of magnetic reconnection and its association with the formation of plasmoids in so-called UV bursts in the low solar atmosphere. The Si IV 1403A UV burst spectra from the transition region show evidence of highly broadened line profiles with often non-Gaussian and triangular shapes, in addition to signatures of bidirectional flows. Such profiles had previously been linked, in idealized numerical simulations, to magnetic reconnection driven by the plasmoid instability. Simultaneous CHROMIS images in the chromospheric Ca II K 3934A line now provide compelling evidence for the presence of plasmoids, by revealing highly dynamic and rapidly moving brightenings that are smaller than 0.2 arcsec and that evolve on timescales of order seconds. Our interpretation of the observations is supported by detailed comparisons with synthetic observables from advanced numerical simulations of magnetic reconnection and associated plasmoids in the chromosphere. Our results highlight how subarcsecond imaging spectroscopy sensitive to a wide range of temperatures combined with advanced numerical simulations that are realistic enough to compare with observations can directly reveal the small-scale physical processes that drive the wide range of phenomena in the solar atmosphere.Comment: Accepted for publication in Astrophysical Journal Letters. Movies are available at http://folk.uio.no/rouppe/plasmoids_chromis
    • …
    corecore