29 research outputs found

    Regularization in Relevance Learning Vector Quantization Using l one Norms

    No full text
    International audienceWe propose in this contribution a method for l one regularization in prototype based relevance learning vector quantization (LVQ) for sparse relevance profiles. Sparse relevance profiles in hyperspectral data analysis fade down those spectral bands which are not necessary for classification. In particular, we consider the sparsity in the relevance profile enforced by LASSO optimization. The latter one is obtained by a gradient learning scheme using a differentiable parametrized approximation of the l1l_{1}-norm, which has an upper error bound. We extend this regularization idea also to the matrix learning variant of LVQ as the natural generalization of relevance learning

    Integration of Auxiliary Data Knowledge in Prototype Based Vector Quantization and Classification Models

    Get PDF
    This thesis deals with the integration of auxiliary data knowledge into machine learning methods especially prototype based classification models. The problem of classification is diverse and evaluation of the result by using only the accuracy is not adequate in many applications. Therefore, the classification tasks are analyzed more deeply. Possibilities to extend prototype based methods to integrate extra knowledge about the data or the classification goal is presented to obtain problem adequate models. One of the proposed extensions is Generalized Learning Vector Quantization for direct optimization of statistical measurements besides the classification accuracy. But also modifying the metric adaptation of the Generalized Learning Vector Quantization for functional data, i. e. data with lateral dependencies in the features, is considered.:Symbols and Abbreviations 1 Introduction 1.1 Motivation and Problem Description . . . . . . . . . . . . . . . . . 1 1.2 Utilized Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Prototype Based Methods 19 2.1 Unsupervised Vector Quantization . . . . . . . . . . . . . . . . . . 22 2.1.1 C-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.1.2 Self-Organizing Map . . . . . . . . . . . . . . . . . . . . . . 25 2.1.3 Neural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.1.4 Common Generalizations . . . . . . . . . . . . . . . . . . . 30 2.2 Supervised Vector Quantization . . . . . . . . . . . . . . . . . . . . 35 2.2.1 The Family of Learning Vector Quantizers - LVQ . . . . . . 36 2.2.2 Generalized Learning Vector Quantization . . . . . . . . . 38 2.3 Semi-Supervised Vector Quantization . . . . . . . . . . . . . . . . 42 2.3.1 Learning Associations by Self-Organization . . . . . . . . . 42 2.3.2 Fuzzy Labeled Self-Organizing Map . . . . . . . . . . . . . 43 2.3.3 Fuzzy Labeled Neural Gas . . . . . . . . . . . . . . . . . . 45 2.4 Dissimilarity Measures . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.4.1 Differentiable Kernels in Generalized LVQ . . . . . . . . . 52 2.4.2 Dissimilarity Adaptation for Performance Improvement . 56 3 Deeper Insights into Classification Problems - From the Perspective of Generalized LVQ- 81 3.1 Classification Models . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.2 The Classification Task . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.3 Evaluation of Classification Results . . . . . . . . . . . . . . . . . . 88 3.4 The Classification Task as an Ill-Posed Problem . . . . . . . . . . . 92 4 Auxiliary Structure Information and Appropriate Dissimilarity Adaptation in Prototype Based Methods 93 4.1 Supervised Vector Quantization for Functional Data . . . . . . . . 93 4.1.1 Functional Relevance/Matrix LVQ . . . . . . . . . . . . . . 95 4.1.2 Enhancement Generalized Relevance/Matrix LVQ . . . . 109 4.2 Fuzzy Information About the Labels . . . . . . . . . . . . . . . . . 121 4.2.1 Fuzzy Semi-Supervised Self-Organizing Maps . . . . . . . 122 4.2.2 Fuzzy Semi-Supervised Neural Gas . . . . . . . . . . . . . 123 5 Variants of Classification Costs and Class Sensitive Learning 137 5.1 Border Sensitive Learning in Generalized LVQ . . . . . . . . . . . 137 5.1.1 Border Sensitivity by Additive Penalty Function . . . . . . 138 5.1.2 Border Sensitivity by Parameterized Transfer Function . . 139 5.2 Optimizing Different Validation Measures by the Generalized LVQ 147 5.2.1 Attention Based Learning Strategy . . . . . . . . . . . . . . 148 5.2.2 Optimizing Statistical Validation Measurements for Binary Class Problems in the GLVQ . . . . . . . . . . . . . 155 5.3 Integration of Structural Knowledge about the Labeling in Fuzzy Supervised Neural Gas . . . . . . . . . . . . . . . . . . . . . . . . . 160 6 Conclusion and Future Work 165 My Publications 168 A Appendix 173 A.1 Stochastic Gradient Descent (SGD) . . . . . . . . . . . . . . . . . . 173 A.2 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . 175 A.3 Fuzzy Supervised Neural Gas Algorithm Solved by SGD . . . . . 179 Bibliography 182 Acknowledgements 20

    Texture feature ranking with relevance learning to classify interstitial lung disease patterns

    Get PDF
    Objective: The generalized matrix learning vector quantization (GMLVQ) is used to estimate the relevance of texture features in their ability to classify interstitial lung disease patterns in high-resolution computed tomography images. Methodology: After a stochastic gradient descent, the GMLVQ algorithm provides a discriminative distance measure of relevance factors, which can account for pairwise correlations between different texture features and their importance for the classification of healthy and diseased patterns. 65 texture features were extracted from gray-level co-occurrence matrices (GLCMs). These features were ranked and selected according to their relevance obtained by GMLVQ and, for comparison, to a mutual information (MI) criteria. The classification performance for different feature subsets was calculated for a k-nearest-neighbor (kNN) and a random forests classifier (RanForest), and support vector machines with a linear and a radial basis function kernel (SVMlin and SVMrbf). Results: For all classifiers, feature sets selected by the relevance ranking assessed by GMLVQ had a significantly better classification performance (p <0.05) for many texture feature sets compared to the MI approach. For kNN, RanForest, and SVMrbf, some of these feature subsets had a significantly better classification performance when compared to the set consisting of all features (p <0.05). Conclusion: While this approach estimates the relevance of single features, future considerations of GMLVQ should include the pairwise correlation for the feature ranking, e.g. to reduce the redundancy of two equally relevant features. (C) 2012 Elsevier B.V. All rights reserved

    Detection of extragalactic Ultra-Compact Dwarfs and Globular Clusters using Explainable AI techniques

    Get PDF
    Compact stellar systems such as Ultra-compact dwarfs (UCDs) and Globular Clusters (GCs) around galaxies are known to be the tracers of the merger events that have been forming these galaxies. Therefore, identifying such systems allows to study galaxies mass assembly, formation and evolution. However, in the lack of spectroscopic information detecting UCDs/GCs using imaging data is very uncertain. Here, we aim to train a machine learning model to separate these objects from the foreground stars and background galaxies using the multi-wavelength imaging data of the Fornax galaxy cluster in 6 filters, namely u, g, r, i, J and Ks. The classes of objects are highly imbalanced which is problematic for many automatic classification techniques. Hence, we employ Synthetic Minority Over-sampling to handle the imbalance of the training data. Then, we compare two classifiers, namely Localized Generalized Matrix Learning Vector Quantization (LGMLVQ) and Random Forest (RF). Both methods are able to identify UCDs/GCs with a precision and a recall of >93% and provide relevances that reflect the importance of each feature dimension for the classification. Both methods detect angular sizes as important markers for this classification problem. While it is astronomical expectation that color indices of u−i and i−Ks are the most important colors, our analysis shows that colors such as g−r are more informative, potentially because of higher signal-to-noise ratio. Besides the excellent performance the LGMLVQ method allows further interpretability by providing the feature importance for each individual class, class-wise representative samples and the possibility for non-linear visualization of the data as demonstrated in this contribution. We conclude that employing machine learning techniques to identify UCDs/GCs can lead to promising results. Especially transparent methods allow further investigation and analysis of importance of the measurements for the detection problem and provide tools for non-linear visualization of the data
    corecore