14,162 research outputs found

    Access and metro network convergence for flexible end-to-end network design

    Get PDF
    This paper reports on the architectural, protocol, physical layer, and integrated testbed demonstrations carried out by the DISCUS FP7 consortium in the area of access - metro network convergence. Our architecture modeling results show the vast potential for cost and power savings that node consolidation can bring. The architecture, however, also recognizes the limits of long-reach transmission for low-latency 5G services and proposes ways to address such shortcomings in future projects. The testbed results, which have been conducted end-to-end, across access - metro and core, and have targeted all the layers of the network from the application down to the physical layer, show the practical feasibility of the concepts proposed in the project

    Fog Computing: A Taxonomy, Survey and Future Directions

    Full text link
    In recent years, the number of Internet of Things (IoT) devices/sensors has increased to a great extent. To support the computational demand of real-time latency-sensitive applications of largely geo-distributed IoT devices/sensors, a new computing paradigm named "Fog computing" has been introduced. Generally, Fog computing resides closer to the IoT devices/sensors and extends the Cloud-based computing, storage and networking facilities. In this chapter, we comprehensively analyse the challenges in Fogs acting as an intermediate layer between IoT devices/ sensors and Cloud datacentres and review the current developments in this field. We present a taxonomy of Fog computing according to the identified challenges and its key features.We also map the existing works to the taxonomy in order to identify current research gaps in the area of Fog computing. Moreover, based on the observations, we propose future directions for research

    Smart Signs: Showing the way in Smart Surroundings

    Get PDF
    This paper presents a context-aware guidance and messaging system for large buildings and surrounding venues. Smart Signs are a new type of electronic door- and way-sign based on wireless sensor networks. Smart Signs present in-situ personalized guidance and messages, are ubiquitous, and easy to understand. They combine the easiness of use of traditional static signs with the flexibility and reactiveness of navigation systems. The Smart Signs system uses context information such as user’s mobility limitations, the weather, and possible emergency situations to improve guidance and messaging. Minimal infrastructure requirements and a simple deployment tool make it feasible to easily deploy a Smart Signs system on demand. An important design issue of the Smart Signs system is privacy: the system secures communication links, does not track users, allow almost complete anonymous use, and prevent the system to be used as a tool for spying on users
    corecore