9,187 research outputs found

    Supply chain collaboration

    Get PDF
    In the past, research in operations management focused on single-firm analysis. Its goal was to provide managers in practice with suitable tools to improve the performance of their firm by calculating optimal inventory quantities, among others. Nowadays, business decisions are dominated by the globalization of markets and increased competition among firms. Further, more and more products reach the customer through supply chains that are composed of independent firms. Following these trends, research in operations management has shifted its focus from single-firm analysis to multi-firm analysis, in particular to improving the efficiency and performance of supply chains under decentralized control. The main characteristics of such chains are that the firms in the chain are independent actors who try to optimize their individual objectives, and that the decisions taken by a firm do also affect the performance of the other parties in the supply chain. These interactions among firms’ decisions ask for alignment and coordination of actions. Therefore, game theory, the study of situations of cooperation or conflict among heterogenous actors, is very well suited to deal with these interactions. This has been recognized by researchers in the field, since there are an ever increasing number of papers that applies tools, methods and models from game theory to supply chain problems

    Sensitivity of multi-product two-stage economic lotsizing models and their dependency on change-over and product cost ratio's

    Get PDF
    This study considers the production and inventory management problem of a two-stage semi-process production system. In case both production stages are physically connected it is obvious that materials are forced to flow. The economic lotsize depends on the holding cost of the end-product and the combined change-over cost of both production stages. On the other hand this 'flow shop' is forced to produce at the speed of the slowest stage. The benefit of this approach is the low amount of Work In Process inventory. When on the other hand, the involved stages are physically disconnected, a stock of intermediates acts as a decoupling point. Typically for the semi-process industry are high change-over costs for the process oriented first stage, which results in large lotsize differences for the different production stages. Using the stock of intermediates as a decoupling point avoids the complexity of synchronising operations but is an additional reason to augment the intermediate stock position. The disadvantage of this model is the high amount of Work-In-Process inventory. This paper proposes the 'synchronised planning model' realising a global optimum instead of the combination of two locally optimised settings. The mathematical model proves (for a two-stage single-product setting) that the optimal two-stage production frequency corresponds with the single EOQ solution for the first stage. A sensitivity study reveals, within these two-stage lotsizing models, the economical cost dependency on product and change-over cost ratio‟s. The purpose of this paper is to understand under which conditions the „joined setup‟ or the „two-stage individual eoq model‟ remain close to the optimal model. Numerical examples prove that the conclusions about the optimal settings remain valid when extending the model to a two-stage multi-product setting. The research reveals that two-stage individually optimized EOQ lotsizing should only be used when the end-product stage has a high added value and small change-over costs, compared to the first stage. Physically connected operations should be used when the end-product stage has a small added value and low change-over costs, or high added value and large change-over costs compared to the first production stage. The paper concludes with suggesting a practical common cycle approach to tackle a two-stage multi-product production and inventory management problem. The common cycle approach brings the benefit of a repetitive and predictable production schedule

    Inventory control for a non-stationary demand perishable product: comparing policies and solution methods

    Get PDF
    This paper summarizes our findings with respect to order policies for an inventory control problem for a perishable product with a maximum fixed shelf life in a periodic review system, where chance constraints play a role. A Stochastic Programming (SP) problem is presented which models a practical production planning problem over a finite horizon. Perishability, non-stationary demand, fixed ordering cost and a service level (chance) constraint make this problem complex. Inventory control handles this type of models with so-called order policies. We compare three different policies: a) production timing is fixed in advance combined with an order up-to level, b) production timing is fixed in advance and the production quantity takes the age distribution into account and c) the decision of the order quantity depends on the age-distribution of the items in stock. Several theoretical properties for the optimal solutions of the policies are presented. In this paper, four different solution approaches from earlier studies are used to derive parameter values for the order policies. For policy a), we use MILP approximations and alternatively the so-called Smoothed Monte Carlo method with sampled demand to optimize values. For policy b), we outline a sample based approach to determine the order quantities. The flexible policy c) is derived by SDP. All policies are compared on feasibility regarding the α-service level, computation time and ease of implementation to support management in the choice for an order policy.National project TIN2015-66680-C2-2-R, in part financed by the European Regional Development Fund (ERDF)

    Static and dynamic inventory models under inflation, time value of money and permissible delay in payment

    Get PDF
    In this research a number of mathematical models were developed for static and dynamic deterministic single-item inventory systems. Economic factors such as inflation, time value of money and permissible delay in payment were considered in developing the models. Nonlinear optimization techniques were used to obtain the optimal policies for the systems.;First, a static single-item inventory model was considered in which shortages are allowed and a delay is permitted in payment. In this case, suppliers allow the customers to settle their accounts after a fixed delay period during which no interest is charged.;An extension of the model was then considered in which all cost components of the model are subject to inflation and discounting, with constant rates over the planning horizon. The mathematical model of the system was developed and a nonlinear optimization technique, Hooke and Jeeves search method, was used to obtain the optimal policies for the system.;A dynamic deterministic single-item inventory model was also considered in which the demand was assumed to be a linear function of time. Suppliers allow for a delay in payment and the cost components are subject to inflation and discounting with constant rates and continuous compounding. The Golden search technique was used to obtain the optimum length of replenishment cycle such that the total cost is minimized.;Computer applications using Visual Basic and Mathematics were developed and several numerical example were solved

    Time decomposition of multi-period supply chain models

    Get PDF
    Many supply chain problems involve discrete decisions in a dynamic environment. The inventory routing problem is an example that combines the dynamic control of inventory at various facilities in a supply chain with the discrete routing decisions of a fleet of vehicles that moves product between the facilities. We study these problems modeled as mixed-integer programs and propose a time decomposition based on approximate inventory valuation. We generate the approximate value function with an algorithm that combines data fitting, discrete optimization and dynamic programming methodology. Our framework allows the user to specify a class of piecewise linear, concave functions from which the algorithm chooses the value function. The use of piecewise linear concave functions is motivated by intuition, theory and practice. Intuitively, concavity reflects the notion that inventory is marginally more valuable the closer one is to a stock-out. Theoretically, piecewise linear concave functions have certain structural properties that also hold for finite mixed-integer program value functions. (Whether the same properties hold in the infinite case is an open question, to our knowledge.) Practically, piecewise linear concave functions are easily embedded in the objective function of a maximization mixed-integer or linear program, with only a few additional auxiliary continuous variables. We evaluate the solutions generated by our value functions in a case study using maritime inventory routing instances inspired by the petrochemical industry. The thesis also includes two other contributions. First, we review various data fitting optimization models related to piecewise linear concave functions, and introduce new mixed-integer programming formulations for some cases. The formulations may be of independent interest, with applications in engineering, mixed-integer non-linear programming, and other areas. Second, we study a discounted, infinite-horizon version of the canonical single-item lot-sizing problem and characterize its value function, proving that it inherits all properties of interest from its finite counterpart. We then compare its optimal policies to our algorithm's solutions as a proof of concept.PhDCommittee Chair: George Nemhauser; Committee Member: Ahmet Keha; Committee Member: Martin Savelsbergh; Committee Member: Santanu Dey; Committee Member: Shabbir Ahme

    Production inventory policy under a discounted cash flow

    Get PDF
    This paper presents an extended production inventory model in which the production rate at any instant depends on the demand and the inventory level. The effects of the time value of money are incorporated into the model. The demand rate is a linear function of time for the scheduling period. The proposed model can assist managers in economically controlling production systems under the condition of considering a discounted cash flow. A simple algorithm computing the optimal production-scheduling period is developed. Several particular cases of the model are briefly discussed. Through numerical example, sensitive analyses are carried out to examine the effect of the parameters. Results show that the discount rate parameter and the inventory holding cost have a significant impact on the proposed model
    • …
    corecore