757 research outputs found

    Identity and Granularity of Events in Text

    Full text link
    In this paper we describe a method to detect event descrip- tions in different news articles and to model the semantics of events and their components using RDF representations. We compare these descriptions to solve a cross-document event coreference task. Our com- ponent approach to event semantics defines identity and granularity of events at different levels. It performs close to state-of-the-art approaches on the cross-document event coreference task, while outperforming other works when assuming similar quality of event detection. We demonstrate how granularity and identity are interconnected and we discuss how se- mantic anomaly could be used to define differences between coreference, subevent and topical relations.Comment: Invited keynote speech by Piek Vossen at Cicling 201

    Web knowledge bases

    Get PDF
    Knowledge is key to natural language understanding. References to specific people, places and things in text are crucial to resolving ambiguity and extracting meaning. Knowledge Bases (KBs) codify this information for automated systems — enabling applications such as entity-based search and question answering. This thesis explores the idea that sites on the web may act as a KB, even if that is not their primary intent. Dedicated kbs like Wikipedia are a rich source of entity information, but are built and maintained at an ongoing cost in human effort. As a result, they are generally limited in terms of the breadth and depth of knowledge they index about entities. Web knowledge bases offer a distributed solution to the problem of aggregating entity knowledge. Social networks aggregate content about people, news sites describe events with tags for organizations and locations, and a diverse assortment of web directories aggregate statistics and summaries for long-tail entities notable within niche movie, musical and sporting domains. We aim to develop the potential of these resources for both web-centric entity Information Extraction (IE) and structured KB population. We first investigate the problem of Named Entity Linking (NEL), where systems must resolve ambiguous mentions of entities in text to their corresponding node in a structured KB. We demonstrate that entity disambiguation models derived from inbound web links to Wikipedia are able to complement and in some cases completely replace the role of resources typically derived from the KB. Building on this work, we observe that any page on the web which reliably disambiguates inbound web links may act as an aggregation point for entity knowledge. To uncover these resources, we formalize the task of Web Knowledge Base Discovery (KBD) and develop a system to automatically infer the existence of KB-like endpoints on the web. While extending our framework to multiple KBs increases the breadth of available entity knowledge, we must still consolidate references to the same entity across different web KBs. We investigate this task of Cross-KB Coreference Resolution (KB-Coref) and develop models for efficiently clustering coreferent endpoints across web-scale document collections. Finally, assessing the gap between unstructured web knowledge resources and those of a typical KB, we develop a neural machine translation approach which transforms entity knowledge between unstructured textual mentions and traditional KB structures. The web has great potential as a source of entity knowledge. In this thesis we aim to first discover, distill and finally transform this knowledge into forms which will ultimately be useful in downstream language understanding tasks

    DWIE: an entity-centric dataset for multi-task document-level information extraction

    Get PDF
    This paper presents DWIE, the 'Deutsche Welle corpus for Information Extraction', a newly created multi-task dataset that combines four main Information Extraction (IE) annotation subtasks: (i) Named Entity Recognition (NER), (ii) Coreference Resolution, (iii) Relation Extraction (RE), and (iv) Entity Linking. DWIE is conceived as an entity-centric dataset that describes interactions and properties of conceptual entities on the level of the complete document. This contrasts with currently dominant mention-driven approaches that start from the detection and classification of named entity mentions in individual sentences. Further, DWIE presented two main challenges when building and evaluating IE models for it. First, the use of traditional mention-level evaluation metrics for NER and RE tasks on entity-centric DWIE dataset can result in measurements dominated by predictions on more frequently mentioned entities. We tackle this issue by proposing a new entity-driven metric that takes into account the number of mentions that compose each of the predicted and ground truth entities. Second, the document-level multi-task annotations require the models to transfer information between entity mentions located in different parts of the document, as well as between different tasks, in a joint learning setting. To realize this, we propose to use graph-based neural message passing techniques between document-level mention spans. Our experiments show an improvement of up to 5.5 F1 percentage points when incorporating neural graph propagation into our joint model. This demonstrates DWIE's potential to stimulate further research in graph neural networks for representation learning in multi-task IE. We make DWIE publicly available at https://github.com/klimzaporojets/DWIE

    Review of coreference resolution in English and Persian

    Full text link
    Coreference resolution (CR) is one of the most challenging areas of natural language processing. This task seeks to identify all textual references to the same real-world entity. Research in this field is divided into coreference resolution and anaphora resolution. Due to its application in textual comprehension and its utility in other tasks such as information extraction systems, document summarization, and machine translation, this field has attracted considerable interest. Consequently, it has a significant effect on the quality of these systems. This article reviews the existing corpora and evaluation metrics in this field. Then, an overview of the coreference algorithms, from rule-based methods to the latest deep learning techniques, is provided. Finally, coreference resolution and pronoun resolution systems in Persian are investigated.Comment: 44 pages, 11 figures, 5 table

    Linear mappings: semantic transfer from transformer models for cognate detection and coreference resolution

    Get PDF
    Includes bibliographical references.2022 Fall.Embeddings or vector representations of language and their properties are useful for understanding how Natural Language Processing technology works. The usefulness of embeddings, however, depends on how contextualized or information-rich such embeddings are. In this work, I apply a novel affine (linear) mapping technique first established in the field of computer vision to embeddings generated from large Transformer-based language models. In particular, I study its use in two challenging linguistic tasks: cross-lingual cognate detection and cross-document coreference resolution. Cognate detection for two Low-Resource Languages (LRL), Assamese and Bengali, is framed as a binary classification problem using semantic (embedding-based), articulatory, and phonetic features. Linear maps for this task are extrinsically evaluated on the extent of transfer of semantic information between monolingual as well as multi-lingual models including those specialized for low-resourced Indian languages. For cross-document coreference resolution, whole-document contextual representations are generated for event and entity mentions from cross- document language models like CDLM and other BERT-variants and then linearly mapped to form coreferring clusters based on their cosine similarities. I evaluate my results on gold output based on established coreference metrics like BCUB and MUC. My findings reveal that linearly transforming vectors from one model's embedding space to another carries certain semantic information with high fidelity thereby revealing the existence of a canonical embedding space and its geometric properties for language models. Interestingly, even for a much more challenging task like coreference resolution, linear maps are able to transfer semantic information between "lighter" models or less contextual models and "larger" models with near-equivalent performance or even improved results in some cases

    Towards the extraction of cross-sentence relations through event extraction and entity coreference

    Get PDF
    Cross-sentence relation extraction deals with the extraction of relations beyond the sentence boundary. This thesis focuses on two of the NLP tasks which are of importance to the successful extraction of cross-sentence relation mentions: event extraction and coreference resolution. The first part of the thesis focuses on addressing data sparsity issues in event extraction. We propose a self-training approach for obtaining additional labeled examples for the task. The process starts off with a Bi-LSTM event tagger trained on a small labeled data set which is used to discover new event instances in a large collection of unstructured text. The high confidence model predictions are selected to construct a data set of automatically-labeled training examples. We present several ways in which the resulting data set can be used for re-training the event tagger in conjunction with the initial labeled data. The best configuration achieves statistically significant improvement over the baseline on the ACE 2005 test set (macro-F1), as well as in a 10-fold cross validation (micro- and macro-F1) evaluation. Our error analysis reveals that the augmentation approach is especially beneficial for the classification of the most under-represented event types in the original data set. The second part of the thesis focuses on the problem of coreference resolution. While a certain level of precision can be reached by modeling surface information about entity mentions, their successful resolution often depends on semantic or world knowledge. This thesis investigates an unsupervised source of such knowledge, namely distributed word representations. We present several ways in which word embeddings can be utilized to extract features for a supervised coreference resolver. Our evaluation results and error analysis show that each of these features helps improve over the baseline coreference system’s performance, with a statistically significant improvement (CoNLL F1) achieved when the proposed features are used jointly. Moreover, all features lead to a reduction in the amount of precision errors in resolving references between common nouns, demonstrating that they successfully incorporate semantic information into the process
    • …
    corecore