36,489 research outputs found

    User producer interaction in context: a classification

    Get PDF
    Science, Technology and Innovation Studies show that intensified user producer interaction (UPI) increases chances for successful innovations, especially in the case of emerging technology. It is not always clear, however, what type of interaction is necessary in a particular context. This paper proposes a conceptualization of contexts in terms of three dimensions – the phase of technology development, the flexibility of the technology, and the heterogeneity of user populations – resulting in a classification scheme with eight different contextual situations. The paper identifies and classifies types of interaction, like demand articulation, interactive learning, learning by using and domestication. It appears that each contextual situation demands a different set of UPI types. To illustrate the potential value of the classification scheme, four examples of innovations with varying technological and user characteristics are explored: the refrigerator, clinical anaesthesia, video cassette recording, and the bicycle. For each example the relevant UPI types are discussed and it is shown how these types highlight certain activities and interactions during key events of innovation processes. Finally, some directions for further research are suggested alongside a number of comments on the utility of the classification

    Enabling Micro-level Demand-Side Grid Flexiblity in Resource Constrained Environments

    Full text link
    The increased penetration of uncertain and variable renewable energy presents various resource and operational electric grid challenges. Micro-level (household and small commercial) demand-side grid flexibility could be a cost-effective strategy to integrate high penetrations of wind and solar energy, but literature and field deployments exploring the necessary information and communication technologies (ICTs) are scant. This paper presents an exploratory framework for enabling information driven grid flexibility through the Internet of Things (IoT), and a proof-of-concept wireless sensor gateway (FlexBox) to collect the necessary parameters for adequately monitoring and actuating the micro-level demand-side. In the summer of 2015, thirty sensor gateways were deployed in the city of Managua (Nicaragua) to develop a baseline for a near future small-scale demand response pilot implementation. FlexBox field data has begun shedding light on relationships between ambient temperature and load energy consumption, load and building envelope energy efficiency challenges, latency communication network challenges, and opportunities to engage existing demand-side user behavioral patterns. Information driven grid flexibility strategies present great opportunity to develop new technologies, system architectures, and implementation approaches that can easily scale across regions, incomes, and levels of development

    Space power systems technology enablement study

    Get PDF
    The power system technologies which enable or enhance future space missions requiring a few kilowatts or less and using the space shuttle were assessed. The advances in space power systems necessary for supporting the capabilities of the space transportation system were systematically determined and benefit/cost/risk analyses were used to identify high payoff technologies and technological priorities. The missions that are enhanced by each development are discussed

    Design of Closed Loop Supply Chains

    Get PDF
    Increased concern for the environment has lead to new techniques to design products and supply chains that are both economically and ecologically feasible. This paper deals with the product - and corresponding supply chain design for a refrigerator. Literature study shows that there are many models to support product design and logistics separately, but not in an integrated way. In our research we develop quantitative modelling to support an optimal design structure of a product, i.e. modularity, repairability, recyclability, as well as the optimal locations and goods flows allocation in the logistics system. Environmental impacts are measured by energy and waste. Economic costs are modelled as linear functions of volumes with a fixed set-up component for facilities. We apply this model using real life R&D data of a Japanese consumer electronics company. The model is run for different scenarios using different parameter settings such as centralised versus decentralised logistics, alternative product designs, varying return quality and quantity, and potential environmental legislation based on producer responsibility.supply chain management;reverse logistics;facility location;network design;product design

    Household Production and Consumption

    Get PDF

    Construction of abatement cost curves: The case of F-gases

    Get PDF
    Most of scientific research on Greenhouse Gases (GHG) focuses on CO2 emissions. But non-CO2 gases (mainly F-gases in the form of HFCs, PFCs, and SF6) are more potent at trapping heat within the atmosphere. Currently, F-gases constitute a small proportion of GHG emissions but they are extremely high Global Warming Potential gases. At the same time, they are expected to increase massively due to the expansion of some emitting industries, while the atmospheric lifetimes of PFCs and SF6 are very long. This study analyzes the economic and technical assumptions in abatement cost calculation in the case of the F-gases. The important factors for differences among countries in average mitigation costs are discussed and the least cost curve of F-gases control for the EU-27 and for the year 2020 is derived. It seems that it is more cost-effective to start abating SF6 first, and then moving to PFCs and then applying control methods to HFCs.F-gases; control methods; emissions; GWP

    Bio-Based Renewable Additives for Anti-Icing Applications (Phase II)

    Get PDF
    The performance and impacts of several agro-based anti-icers along with a traditional chloride-based anti-icer (salt brine) were evaluated. A statistical design of experiments (central composite design) was employed for developing anti-icing liquids consisting of cost-competitive chemicals such as agro-based compounds (e.g., Concord grape extract and glycerin), sodium chloride, sodium metasilicate, and sodium formate. The following experimentally obtained parameters were examined as a function of the formulation design: ice-melting capacity at 25°F (−3.9°C), splitting strength of Portland cement mortar samples after 10 freeze-thaw/deicer cycles, corrosion rate of C1010 carbon steel after 24-hour immersion, and impact on asphalt binder stiffness and m-value. One viable formula (“best performer”) was tested for thermal properties by measuring its differential scanning calorimetry (DSC) thermograms, the friction coefficient of asphalt pavement treated by this anti-icing formulation (vs. 23 wt.% NaCl and beet juice blend) at 25°F after being applied at 30 gallons per lane mile (1 hour after simulated trafficking and plowing), and other properties (pH, oxygen demand in COD). Laboratory data shed light on the selection and formulation of innovative agro-based snow- and ice-control chemicals that can significantly reduce the costs of winter maintenance operations

    A MULTI-STAGE DECISION SUPPORT MODEL FOR COORDINATED SUSTAINABLE PRODUCT AND SUPPLY CHAIN DESIGN

    Get PDF
    In this research, a decision support model for coordinating sustainable product and supply chain design decisions is developed using a multi-stage hierarchical approach. The model evaluates alternate product designs and their corresponding supply chain configurations to identify the best product design and the corresponding supply chain configuration that maximizes the economic, environmental and societal benefits. The model considers a total life-cycle approach and incorporates closed-loop flow among multiple product lifecycles. In the first stage, a mixed integer linear programming model is developed to select for each product design an optimal supply chain configuration that maximizes the profit. In the subsequent stages, the economic, environmental and societal multiple life-cycle analysis models are developed which assess the economic, environment and the societal performance of each product design and its optimal supply chain configuration to identify the best product design with highest sustainability benefits. The decision support model is applied for an example problem to illustrate the procedure for identifying the best sustainable design. Later, the model is applied for a real-time refrigerator case to identify the best refrigerator design that maximizes economic, environmental and societal benefits. Further, sensitivity analysis is performed on the optimization model to study the closed-loop supply chain behavior under various situations. The results indicated that both product and supply chain design criteria significantly influence the performance of the supply chain. The results provided insights into closed-loop supply chain models and their behavior under various situations. Decision support models such as above can help a company identify the best designs that bring highest sustainability benefits, can provide a manager with holistic view and the impact of their design decisions on the supply chain performance and also provide areas for improvement
    corecore