19,482 research outputs found

    Wrinkling hierarchy in constrained thin sheets from suspended graphene to curtains

    Full text link
    We show that thin sheets under boundary confinement spontaneously generate a universal self-similar hierarchy of wrinkles. From simple geometry arguments and energy scalings, we develop a formalism based on wrinklons, the transition zone in the merging of two wrinkles, as building-blocks of the global pattern. Contrary to the case of crumple paper where elastic energy is focused, this transition is described as smooth in agreement with a recent numerical work. This formalism is validated from hundreds of nm for graphene sheets to meters for ordinary curtains, which shows the universality of our description. We finally describe the effect of an external tension to the distribution of the wrinkles.Comment: 7 pages, 4 figures, added references, submitted for publicatio

    Unique Thermal Properties of Clothing Materials.

    Get PDF
    Cloth wearing seems so natural that everyone is self-deemed knowledgeable and has some expert opinions about it. However, to clearly explain the physics involved, and hence to make predictions for clothing design or selection, it turns out to be quite challenging even for experts. Cloth is a multiphased, porous, and anisotropic material system and usually in multilayers. The human body acts as an internal heat source in a clothing situation, thus forming a temperature gradient between body and ambient. But unlike ordinary engineering heat transfer problems, the sign of this gradient often changes as the ambient temperature varies. The human body also perspires and the sweat evaporates, an effective body cooling process via phase change. To bring all the variables into analysis quickly escalates into a formidable task. This work attempts to unravel the problem from a physics perspective, focusing on a few rarely noticed yet critically important mechanisms involved so as to offer a clearer and more accurate depiction of the principles in clothing thermal comfort

    Seismic anisotropy of Precambrian lithosphere : Insights from Rayleigh wave tomography of the eastern Superior Craton

    Get PDF
    The seismic data used in this study are freely available from the CNDC (Canadian National Data Centre for Earthquake Seismology and Nuclear Explosion Monitoring) and IRIS DMC (Data Management Center) via their data request tools. The Leverhulme Trust (grant RPG-2013-332) and National Science Foundation are acknowledged for financial support. L.P. is supported by Janet Watson Imperial College Department Scholarship and the Romanian Government Research Grant NUCLEU. F.D. is supported by NSERC through the Discovery Grants and Canada Research Chairs program. We also thank two anonymous reviewers and the Associate Editor for insightful comments that helped improve the manuscript.Peer reviewedPublisher PD

    Lattice QCD Production on Commodity Clusters at Fermilab

    Full text link
    We describe the construction and results to date of Fermilab's three Myrinet-networked lattice QCD production clusters (an 80-node dual Pentium III cluster, a 48-node dual Xeon cluster, and a 128-node dual Xeon cluster). We examine a number of aspects of performance of the MILC lattice QCD code running on these clusters.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 6 pages, LaTeX, 8 eps figures. PSN TUIT00

    Space benefits: The secondary application of aerospace technology in other sectors of the economy

    Get PDF
    Benefit cases of aerospace technology utilization are presented for manufacturing, transportation, utilities, and health. General, organization, geographic, and field center indexes are included

    Frictional behavior of talc-calcite mixtures

    Get PDF
    Faults involving phyllosilicates appear weak when compared to the laboratory-derived strength of most crustal rocks. Among phyllosilicates, talc, with very low friction, is one of the weakest minerals involved in various tectonic settings. As the presence of talc has been recently documented in carbonate faults, we performed laboratory friction experiments to better constrain how various amounts of talc could alter these fault’s frictional properties. We used a biaxial apparatus to systematically shear different mixtures of talc and calcite as powdered gouge at room temperature, normal stresses up to 50 MPa and under different pore fluid saturated conditions, i.e., CaCO3-equilibrated water and silicone oil. We performed slide-hold-slide tests, 1–3000 s, to measure the amount of frictional healing and velocity-stepping tests, 0.1–1000 μm/s, to evaluate frictional stability. We then analyzed microstructures developed during our experiments. Our results show that with the addition of 20% talc the calcite gouge undergoes a 70% reduction in steady state frictional strength, a complete reduction of frictional healing and a transition from velocity-weakening to velocity-strengthening behavior. Microstructural analysis shows that with increasing talc content, deformation mechanisms evolve from distributed cataclastic flow of the granular calcite to localized sliding along talc-rich shear planes, resulting in a fully interconnected network of talc lamellae from 20% talc onward. Our observations indicate that in faults where talc and calcite are present, a low concentration of talc is enough to strongly modify the gouge’s frictional properties and specifically to weaken the fault, reduce its ability to sustain future stress drops, and stabilize slip
    • …
    corecore