5,378 research outputs found

    "Minimal defence": a refinement of the preferred semantics for argumentation frameworks

    Full text link
    Dung's abstract framework for argumentation enables a study of the interactions between arguments based solely on an ``attack'' binary relation on the set of arguments. Various ways to solve conflicts between contradictory pieces of information have been proposed in the context of argumentation, nonmonotonic reasoning or logic programming, and can be captured by appropriate semantics within Dung's framework. A common feature of these semantics is that one can always maximize in some sense the set of acceptable arguments. We propose in this paper to extend Dung's framework in order to allow for the representation of what we call ``restricted'' arguments: these arguments should only be used if absolutely necessary, that is, in order to support other arguments that would otherwise be defeated. We modify Dung's preferred semantics accordingly: a set of arguments becomes acceptable only if it contains a minimum of restricted arguments, for a maximum of unrestricted arguments.Comment: 8 pages, 3 figure

    A structured argumentation framework for detaching conditional obligations

    Full text link
    We present a general formal argumentation system for dealing with the detachment of conditional obligations. Given a set of facts, constraints, and conditional obligations, we answer the question whether an unconditional obligation is detachable by considering reasons for and against its detachment. For the evaluation of arguments in favor of detaching obligations we use a Dung-style argumentation-theoretical semantics. We illustrate the modularity of the general framework by considering some extensions, and we compare the framework to some related approaches from the literature.Comment: This is our submission to DEON 2016, including the technical appendi

    On the equivalence between logic programming semantics and argumentation semantics

    Get PDF
    This work has been supported by the National Research Fund, Luxembourg (LAAMI project), by the Engineering and Physical Sciences Research Council (EPSRC, UK), grant Ref. EP/J012084/1 (SAsSy project), by CNPq (Universal 2012 – Proc. 473110/2012-1), and by CNPq/CAPES (Casadinho/PROCAD 2011).Peer reviewedPreprin

    The Complexity of Repairing, Adjusting, and Aggregating of Extensions in Abstract Argumentation

    Full text link
    We study the computational complexity of problems that arise in abstract argumentation in the context of dynamic argumentation, minimal change, and aggregation. In particular, we consider the following problems where always an argumentation framework F and a small positive integer k are given. - The Repair problem asks whether a given set of arguments can be modified into an extension by at most k elementary changes (i.e., the extension is of distance k from the given set). - The Adjust problem asks whether a given extension can be modified by at most k elementary changes into an extension that contains a specified argument. - The Center problem asks whether, given two extensions of distance k, whether there is a "center" extension that is a distance at most (k-1) from both given extensions. We study these problems in the framework of parameterized complexity, and take the distance k as the parameter. Our results covers several different semantics, including admissible, complete, preferred, semi-stable and stable semantics

    On the Existence of Characterization Logics and Fundamental Properties of Argumentation Semantics

    Get PDF
    Given the large variety of existing logical formalisms it is of utmost importance to select the most adequate one for a specific purpose, e.g. for representing the knowledge relevant for a particular application or for using the formalism as a modeling tool for problem solving. Awareness of the nature of a logical formalism, in other words, of its fundamental intrinsic properties, is indispensable and provides the basis of an informed choice. One such intrinsic property of logic-based knowledge representation languages is the context-dependency of pieces of knowledge. In classical propositional logic, for example, there is no such context-dependence: whenever two sets of formulas are equivalent in the sense of having the same models (ordinary equivalence), then they are mutually replaceable in arbitrary contexts (strong equivalence). However, a large number of commonly used formalisms are not like classical logic which leads to a series of interesting developments. It turned out that sometimes, to characterize strong equivalence in formalism L, we can use ordinary equivalence in formalism L0: for example, strong equivalence in normal logic programs under stable models can be characterized by the standard semantics of the logic of here-and-there. Such results about the existence of characterizing logics has rightly been recognized as important for the study of concrete knowledge representation formalisms and raise a fundamental question: Does every formalism have one? In this thesis, we answer this question with a qualified “yes”. More precisely, we show that the important case of considering only finite knowledge bases guarantees the existence of a canonical characterizing formalism. Furthermore, we argue that those characterizing formalisms can be seen as classical, monotonic logics which are uniquely determined (up to isomorphism) regarding their model theory. The other main part of this thesis is devoted to argumentation semantics which play the flagship role in Dung’s abstract argumentation theory. Almost all of them are motivated by an easily understandable intuition of what should be acceptable in the light of conflicts. However, although these intuitions equip us with short and comprehensible formal definitions it turned out that their intrinsic properties such as existence and uniqueness, expressibility, replaceability and verifiability are not that easily accessible. We review the mentioned properties for almost all semantics available in the literature. In doing so we include two main axes: namely first, the distinction between extension-based and labelling-based versions and secondly, the distinction of different kind of argumentation frameworks such as finite or unrestricted ones
    • …
    corecore